Most pedigrees suggest an autosomal dominant mode of inheritance with incomplete penetrance. Approximately 10–25% of DBA occurs with a family history of disease. About 25-50% of the causes of DBA have been tied to abnormal ribosomal protein genes. The disease is characterized by genetic heterogeneity, affecting different ribosomal gene loci: Exceptions to this paradigm have been demonstrated, such as with rare mutations of transcription factorGATA1 and advanced alternative splicing of a gene involved in iron metabolism, SLC49A1.
In 1997, a patient was identified who carried a rare balanced chromosomal translocation involving chromosome 19 and the X chromosome. This suggested that the affected gene might lie in one of the two regions that were disrupted by this cytogeneticanomaly. Linkage analysis in affected families also implicated this region in disease, and led to the cloning of the first DBA gene. About 20–25% of DBA cases are caused by mutations in the ribosome protein S19 gene on chromosome 19 at cytogenetic position 19q13.2. Some previously undiagnosed relatives of DBA patients were found to carry mutations, and also had increased adenosine deaminase levels in their red blood cells, but had no other overt signs of disease. A subsequent study of families with no evidence of RPS19 mutations determined that 18 of 38 families showed evidence for involvement of an unknown gene on chromosome 8 at 8p23.3-8p22. The precise genetic defect in these families has not yet been delineated. Malformations are seen more frequently with DBA6 RPL5 and DBA7 RPL11 mutations. The genetic abnormalities underpinning the combination of DBA with Treacher Collins syndrome /mandibulofacial dysostosis phenotypes are heterogeneous, including RPS26, TSR2 which encodes a direct binding partner of RPS26, and RPS28.
Molecular basis
The phenotype of DBA patients suggests a hematologicalstem cell defect specifically affecting the erythroid progenitor population. Loss of ribosomal function might be predicted to affect translation and protein biosynthesis broadly and impact many tissues. However, DBA is characterized by dominant inheritance, and arises from partial loss of ribosomal function, so it is possible that erythroid progenitors are more sensitive to this decreased function, while most other tissues are less affected.
Diagnosis
Typically, a diagnosis of DBA is made through a blood count and a bone marrow biopsy. A diagnosis of DBA is made on the basis of anemia, low reticulocyte counts, and diminished erythroid precursors in bone marrow. Features that support a diagnosis of DBA include the presence of congenital abnormalities, macrocytosis, elevated fetal hemoglobin, and elevated adenosine deaminase levels in red blood cells. Most patients are diagnosed in the first two years of life. However, some mildly affected individuals only receive attention after a more severely affected family member is identified.About 20–25% of DBA patients may be identified with a genetic test for mutations in the RPS19 gene.
Treatment
can be used to treat anemia in DBA. In a large study of 225 patients, 82% initially responded to this therapy, although many side effects were noted. Some patients remained responsive to steroids, while efficacy waned in others. Blood transfusions can also be used to treat severe anemia in DBA. Periods of remission may occur, during which transfusions and steroid treatments are not required. Bone marrow transplantation can cure hematological aspects of DBA. This option may be considered when patients become transfusion-dependent because frequent transfusions can lead to iron overloading and organ damage. However, adverse events from BMTs may exceed those from iron overloading. A 2007 study showed the efficacy of leucine and isoleucine supplementation in one patient. Larger studies are being conducted.
History
First noted by Hugh W. Josephs in 1936, the condition is however named for the pediatricians Louis K. Diamond and Kenneth Blackfan, who described congenital hypoplastic anemia in 1938. Responsiveness to corticosteroids was reported in 1951. In 1961, Diamond and colleagues presented longitudinal data on 30 patients and noted an association with skeletal abnormalities. In 1997, a region on chromosome 19 was determined to carry a gene mutated in some DBA. In 1999, mutations in the ribosomal protein S19 gene were found to be associated with disease in 42 of 172 DBA patients. In 2001, a second DBA gene was localized to a region of chromosome 8, and further genetic heterogeneity was inferred. Additional genes were subsequently identified.