Disinfectant
Disinfectants are chemical agents designed to inactivate or destroy microorganisms on inert surfaces. Disinfection does not necessarily kill all microorganisms, especially resistant bacterial spores; it is less effective than sterilization, which is an extreme physical or chemical process that kills all types of life. Disinfectants are generally distinguished from other antimicrobial agents such as antibiotics, which destroy microorganisms within the body, and antiseptics, which destroy microorganisms on living tissue. Disinfectants are also different from biocides — the latter are intended to destroy all forms of life, not just microorganisms.
Disinfectants work by destroying the cell wall of microbes or interfering with their metabolism.
Sanitizers are substances that simultaneously clean and disinfect. Disinfectants kill more germs than sanitizers. Disinfectants are frequently used in hospitals, dental surgeries, kitchens, and bathrooms to kill infectious organisms. Sanitizers are mild compared to disinfectants and are used majorly to clean things which are in human contact whereas disinfectants are concentrated and are used to clean surfaces like floors and building premises.
Bacterial endospores are most resistant to disinfectants, but some fungi, viruses and bacteria also possess some resistance.
In wastewater treatment, a disinfection step with chlorine, ultra-violet radiation or ozonation can be included as tertiary treatment to remove pathogens from wastewater, for example if it is to be discharged to a river or the sea where there body contact immersion recreations is practiced or reused to irrigate golf courses. An alternative term used in the sanitation sector for disinfection of waste streams, sewage sludge or fecal sludge is sanitisation or sanitization.
Properties
A perfect disinfectant would also offer complete and full microbiological sterilisation, without harming humans and useful form of life, be inexpensive, and noncorrosive. However, most disinfectants are also, by nature, potentially harmful to humans or animals. Most modern household disinfectants contain denatonium, an exceptionally bitter substance added to discourage ingestion, as a safety measure. Those that are used indoors should never be mixed with other cleaning products as chemical reactions can occur. The choice of disinfectant to be used depends on the particular situation. Some disinfectants have a wide spectrum, while others kill a smaller range of disease-causing organisms but are preferred for other properties.There are arguments for creating or maintaining conditions that are not conducive to bacterial survival and multiplication, rather than attempting to kill them with chemicals. Bacteria can increase in number very quickly, which enables them to evolve rapidly. Should some bacteria survive a chemical attack, they give rise to new generations composed completely of bacteria that have resistance to the particular chemical used. Under a sustained chemical attack, the surviving bacteria in successive generations are increasingly resistant to the chemical used, and ultimately the chemical is rendered ineffective. For this reason, some question the wisdom of impregnating cloths, cutting boards and worktops in the home with bactericidal chemicals.
Types
Air disinfectants
Air disinfectants are typically chemical substances capable of disinfecting microorganisms suspended in the air. Disinfectants are generally assumed to be limited to use on surfaces, but that is not the case. In 1928, a study found that airborne microorganisms could be killed using mists of dilute bleach. An air disinfectant must be dispersed either as an aerosol or vapour at a sufficient concentration in the air to cause the number of viable infectious microorganisms to be significantly reduced.In the 1940s and early 1950s, further studies showed inactivation of diverse bacteria, influenza virus, and Penicillium chrysogenum mold fungus using various glycols, principally propylene glycol and triethylene glycol. In principle, these chemical substances are ideal air disinfectants because they have both high lethality to microorganisms and low mammalian toxicity.
Although glycols are effective air disinfectants in controlled laboratory environments, it is more difficult to use them effectively in real-world environments because the disinfection of air is sensitive to continuous action. Continuous action in real-world environments with outside air exchanges at door, HVAC, and window interfaces, and in the presence of materials that adsorb and remove glycols from the air, poses engineering challenges that are not critical for surface disinfection. The engineering challenge associated with creating a sufficient concentration of the glycol vapours in the air have not to date been sufficiently addressed.
Alcohols
and alcohol plus Quaternary ammonium cation based compounds comprise a class of proven surface sanitizers and disinfectants approved by the EPA and the Centers for Disease Control for use as a hospital grade disinfectant. Alcohols are most effective when combined with distilled water to facilitate diffusion through the cell membrane; 100% alcohol typically denatures only external membrane proteins. A mixture of 70% ethanol or isopropanol diluted in water is effective against a wide spectrum of bacteria, though higher concentrations are often needed to disinfect wet surfaces. Additionally, high-concentration mixtures are required to effectively inactivate lipid-enveloped viruses.The efficacy of alcohol is enhanced when in solution with the wetting agent dodecanoic acid. The synergistic effect of 29.4% ethanol with dodecanoic acid is effective against a broad spectrum of bacteria, fungi, and viruses. Further testing is being performed against Clostridium difficile spores with higher concentrations of ethanol and dodecanoic acid, which proved effective with a contact time of ten minutes.
Aldehydes
s, such as formaldehyde and glutaraldehyde, have a wide microbiocidal activity and are sporicidal and fungicidal. They are partly inactivated by organic matter and have slight residual activity.Some bacteria have developed resistance to glutaraldehyde, and it has been found that glutaraldehyde can cause asthma and other health hazards, hence ortho-phthalaldehyde is replacing glutaraldehyde.
Oxidizing agents
act by oxidizing the cell membrane of microorganisms, which results in a loss of structure and leads to cell lysis and death. A large number of disinfectants operate in this way. Chlorine and oxygen are strong oxidizers, so their compounds figure heavily here.- Electrolyzed water or "Anolyte" is an oxidizing, acidic hypochlorite solution made by electrolysis of sodium chloride into sodium hypochlorite and hypochlorous acid. Anolyte has an oxidation-reduction potential of +600 to +1200 mV and a typical pH range of 3.5––8.5, but the most potent solution is produced at a controlled pH 5.0–6.3 where the predominant oxychlorine species is hypochlorous acid.
- Hydrogen peroxide is used in hospitals to disinfect surfaces and it is used in solution alone or in combination with other chemicals as a high level disinfectant. Hydrogen peroxide is sometimes mixed with colloidal silver. It is often preferred because it causes far fewer allergic reactions than alternative disinfectants. Also used in the food packaging industry to disinfect foil containers. A 3% solution is also used as an antiseptic.
- Hydrogen peroxide vapor is used as a medical sterilant and as room disinfectant. Hydrogen peroxide has the advantage that it decomposes to form oxygen and water thus leaving no long term residues, but hydrogen peroxide as with most other strong oxidants is hazardous, and solutions are a primary irritant. The vapor is hazardous to the respiratory system and eyes and consequently the OSHA permissible exposure limit is 1 ppm calculated as an eight-hour time weighted average and the NIOSH immediately dangerous to life and health limit is 75 ppm. Therefore, engineering controls, personal protective equipment, gas monitoring etc. should be employed where high concentrations of hydrogen peroxide are used in the workplace. Vaporized hydrogen peroxide is one of the chemicals approved for decontamination of anthrax spores from contaminated buildings, such as occurred during the 2001 anthrax attacks in the U.S. It has also been shown to be effective in removing exotic animal viruses, such as avian influenza and Newcastle disease from equipment and surfaces.
- The antimicrobial action of hydrogen peroxide can be enhanced by surfactants and organic acids. The resulting chemistry is known as Accelerated Hydrogen Peroxide. A 2% solution, stabilized for extended use, achieves high-level disinfection in 5 minutes, and is suitable for disinfecting medical equipment made from hard plastic, such as in endoscopes. The evidence available suggests that products based on Accelerated Hydrogen Peroxide, apart from being good germicides, are safer for humans and benign to the environment.
- Ozone is a gas used for disinfecting water, laundry, foods, air, and surfaces. It is chemically aggressive and destroys many organic compounds, resulting in rapid decolorization and deodorization in addition to disinfection. Ozone decomposes relatively quickly. However, due to this characteristic of ozone, tap water chlorination cannot be entirely replaced by ozonation, as the ozone would decompose already in the water piping. Instead, it is used to remove the bulk of oxidizable matter from the water, which would produce small amounts of organochlorides if treated with chlorine only. Regardless, ozone has a very wide range of applications from municipal to industrial water treatment due to its powerful reactivity.
- Potassium permanganate is a purplish-black crystalline powder that colours everything it touches, through a strong oxidising action. This includes staining "stainless" steel, which somehow limits its use and makes it necessary to use plastic or glass containers. It is used to disinfect aquariums and is used in some community swimming pools as a foot disinfectant before entering the pool. Typically, a large shallow basin of KMnO4 / water solution is kept near the pool ladder. Participants are required to step in the basin and then go into the pool. Additionally, it is widely used to disinfect community water ponds and wells in tropical countries, as well as to disinfect the mouth before pulling out teeth. It can be applied to wounds in dilute solution.
Peroxy and peroxo acids
- Peroxyformic acid
- Peracetic acid
- Peroxypropionic acid
- Monoperoxyglutaric acid
- Monoperoxysuccinic acid
- Peroxybenzoic acid
- Peroxyanisic acid
- Chloroperbenzoic acid
- Monoperoxyphthalic acid
- Peroxymonosulfuric acid
Phenolics
- Phenol is probably the oldest known disinfectant as it was first used by Lister, when it was called carbolic acid. It is rather corrosive to the skin and sometimes toxic to sensitive people. Impure preparations of phenol were originally made from coal tar, and these contained low concentrations of other aromatic hydrocarbons including benzene, which is an IARC Group 1 carcinogen.
- o-Phenylphenol is often used instead of phenol, since it is somewhat less corrosive.
- Chloroxylenol is the principal ingredient in Dettol, a household disinfectant and antiseptic.
- Hexachlorophene is a phenolic that was once used as a germicidal additive to some household products but was banned due to suspected harmful effects.
- Thymol, derived from the herb thyme, is the active ingredient in some "broad spectrum" disinfectants that often bear ecological claims. It is used as a stabilizer in pharmaceutic preparations. It has been used for its antiseptic, antibacterial, and antifungal actions, and was formerly used as a vermifuge.
- Amylmetacresol is found in Strepsils, a throat disinfectant.
- Although not a phenol, 2,4-dichlorobenzyl alcohol has similar effects as phenols, but it cannot inactivate viruses.
Quaternary ammonium compounds
Inorganic compounds
Chlorine
This group comprises aqueous solution of chlorine, hypochlorite, or hypochlorous acid. Occasionally, chlorine-releasing compounds and their salts are included in this group. Frequently, a concentration of < 1 ppm of available chlorine is sufficient to kill bacteria and viruses, spores and mycobacteria requiring higher concentrations.Chlorine has been used for applications, such as the deactivation of pathogens in drinking water, swimming pool water and wastewater, for the disinfection of household areas and for textile bleaching
- Sodium hypochlorite
- Calcium hypochlorite
- Monochloramine
- Chloramine-T
- Trichloroisocyanuric acid
- Chlorine dioxide
- Hypochlorous acid
Iodine
- Iodine
- Iodophors
Acids and bases
- Sodium hydroxide
- Potassium hydroxide
- Calcium hydroxide
- Magnesium hydroxide
- Sulfurous acid
- Sulfur dioxide
Metals
Terpenes
- Thymol
- Pine oil
Other
Common sodium bicarbonate has antifungal properties, and some antiviral and antibacterial properties, though those are too weak to be effective at a home environment.
Non-chemical
is the use of high-intensity shortwave ultraviolet light for disinfecting smooth surfaces such as dental tools, but not porous materials that are opaque to the light such as wood or foam. Ultraviolet light is also used for municipal water treatment. Ultraviolet light fixtures are often present in microbiology labs, and are activated only when there are no occupants in a room.Heat treatment can be used for disinfection and sterilization.
The phrase "sunlight is the best disinfectant" was popularized in 1913 by United States Supreme Court Justice Louis Brandeis and later advocates of government transparency. While sunlight's ultraviolet rays can act as a disinfectant, the Earth's ozone layer blocks the rays' most effective wavelengths. Ultraviolet light-emitting machines, such as those used to disinfect some hospital rooms, make for better disinfectants than sunlight.
Measurements of effectiveness
One way to compare disinfectants is to compare how well they do against a known disinfectant and rate them accordingly. Phenol is the standard, and the corresponding rating system is called the "Phenol coefficient". The disinfectant to be tested is compared with phenol on a standard microbe. Disinfectants that are more effective than phenol have a coefficient > 1. Those that are less effective have a coefficient < 1.The standard European approach for disinfectant validation consists of a basic suspension test, a quantitative suspension test and a two part simulated-use surface test.
A less specific measurement of effectiveness is the United States Environmental Protection Agency classification into either high, intermediate or low levels of disinfection. "High-level disinfection kills all organisms, except high levels of bacterial spores" and is done with a chemical germicide marketed as a sterilant by the U.S. Food and Drug Administration. "Intermediate-level disinfection kills mycobacteria, most viruses, and bacteria with a chemical germicide registered as a 'tuberculocide' by the Environmental Protection Agency. Low-level disinfection kills some viruses and bacteria with a chemical germicide registered as a hospital disinfectant by the EPA."
An alternative assessment is to measure the Minimum inhibitory concentrations of disinfectants against selected microbial species, such as through the use of microbroth dilution testing. However, those methods are obtained at standard inoculum levels without considering the inoculum effect. More informative methods are nowadays in demand to determine the minimum disinfectant dose as a function of the density of the target microbial species.
Home disinfectants
The most cost-effective home disinfectant is chlorine bleach, which is effective against most common pathogens, including disinfectant-resistant organisms such as tuberculosis, hepatitis B and C, fungi, and antibiotic-resistant strains of staphylococcus and enterococcus. It has disinfectant action against some parasitic organisms.The benefits of chlorine bleach include its inexpensive and fast acting nature. However it is harmful to mucous membranes and skin upon contact, has a strong odour; is not effective against Giardia lamblia and Cryptosporidium; and combination with other cleaning products such as ammonia and vinegar can generate noxious gases like chlorine. The best practice is not to add anything to household bleach except water. As with most disinfectants, the area requiring disinfection should be cleaned before the application of the chlorine bleach, as the presence of organic materials may inactivate chlorine bleach.
The use of some antimicrobials such as triclosan, is controversial because it may lead to antimicrobial resistance. The use of chlorine bleach and alcohol disinfectants does not cause antimicrobial resistance as it denatures the protein of the microbe upon contact.