Ethernet over twisted pair


Ethernet over twisted pair technologies use twisted-pair cables for the physical layer of an Ethernet computer network. They are a subset of all Ethernet physical layers.
Early Ethernet used various grades of coaxial cable, but in 1984, StarLAN showed the potential of simple unshielded twisted pair. This led to the development of 10BASE-T and its successors 100BASE-TX, 1000BASE-T and 10GBASE-T, supporting speeds of 10 and 100 megabit per second, then 1 and 10 gigabit per second respectively.
All these standards use 8P8C modular connectors, and supported cable standards range from Cat 3 to Cat 8. These cables typically have four pairs of wires for each connection although early Ethernet used only two of the pairs.

History

The first two early designs of twisted pair networking were StarLAN, standardized by the IEEE Standards Association as IEEE 802.3e in 1986, at one megabit per second, and LattisNet, developed in January 1987, at 10 megabit per second. Both were developed before the 10BASE-T standard and used different signalling, so they were not directly compatible with it.
In 1988, AT&T released StarLAN 10, named for working at 10 Mbit/s. The StarLAN 10 signalling was used as the basis of 10BASE-T, with the addition of link beat to quickly indicate connection status.
Using twisted pair cabling, in a star topology, for Ethernet addressed several weaknesses of the previous standards:
Although 10BASE-T is rarely used as a normal-operation signaling rate today, it is still in wide use with network interface controllers in Wake-on-LAN power-down mode and for special, low-power, low-bandwidth applications. 10BASE-T is still supported on most twisted-pair Ethernet ports with up to Gigabit Ethernet speed.

Naming

The common names for the standards derive from aspects of the physical media. The leading number refers to the transmission speed in Mbit/s. BASE denotes that baseband transmission is used. The T designates twisted pair cable. Where there are several standards for the same transmission speed, they are distinguished by a letter or digit following the T, such as TX or T4, referring to the encoding method and number of lanes.

Cabling

PinPairWireColor
13tip white/green
23ring green
32tip white/orange
41ring blue
51tip white/blue
62ring orange
74tip white/brown
84ring brown

Most Ethernet cables are wired "straight-through". In some instances the "crossover" form may still be required.
Cables for Ethernet may be wired to either the T568A or T568B termination standards at both ends of the cable. Since these standards differ only in that they swap the positions of the two pairs used for transmitting and receiving, a cable with T568A wiring at one end and T568B wiring at the other results in a crossover cable.
A 10BASE-T or 100BASE-TX host uses a connector wiring called medium dependent interfaces, transmitting on pins 1 and 2 and receiving on pins 3 and 6 to a network device. An infrastructure node accordingly uses a connector wiring called MDI-X, transmitting on pins 3 and 6 and receiving on pins 1 and 2. These ports are connected using a straight-through cable so each transmitter talks to the receiver on the other end of the cable.
Nodes can have two types of ports: MDI or MDI-X. Hubs and switches have regular ports. Routers, servers and end hosts have uplink ports. When two nodes having the same type of ports need to be connected, a crossover cable may be required, especially for older equipment. Connecting nodes having different type of ports requires straight-through cable. Thus connecting an end host to a hub or switch requires a straight-through cable. Some older switches and hubs provided a button to allow a port to act as either a normal or an uplink port, i.e. using MDI-X or MDI pinout respectively.
Many modern Ethernet host adapters can automatically detect another computer connected with a straight-through cable and then automatically introduce the required crossover, if needed; if neither of the adapters has this capability, then a crossover cable is required. Most newer switches have auto MDI-X on all ports allowing all connections to be made with straight-through cables. If both devices being connected support 1000BASE-T according to the standards, they will connect regardless of whether a straight-through or crossover cable is used.
A 10BASE-T transmitter sends two differential voltages, +2.5 V or −2.5 V. A 100BASE-TX transmitter sends three differential voltages, +1 V, 0 V, or −1 V. Unlike earlier Ethernet standards using broadband and coaxial cable, such as 10BASE5 and 10BASE2, 10BASE-T does not specify the exact type of wiring to be used, but instead specifies certain characteristics that a cable must meet. This was done in anticipation of using 10BASE-T in existing twisted-pair wiring systems that did not conform to any specified wiring standard. Some of the specified characteristics are attenuation, characteristic impedance, propagation delay, and several types of noise and crosstalk. Cable testers are widely available to check these parameters to determine if a cable can be used with 10BASE-T. These characteristics are expected to be met by 100 meters of 24-gauge unshielded twisted-pair cable. However, with high quality cabling, reliable cable runs of 150 meters or longer are often achievable and are considered viable by technicians familiar with the 10BASE-T specification.
100BASE-TX follows the same wiring patterns as 10BASE-T, but is more sensitive to wire quality and length, due to the higher bit rates.
1000BASE-T uses all four pairs bi-directionally using hybrid circuits and cancellers. Data is encoded using 4D-PAM5; four dimensions using PAM with five voltages, −2 V, −1 V, 0 V, +1 V, and +2 V. While +2 V to −2 V may appear at the pins of the line driver, the voltage on the cable is nominally +1 V, +0.5 V, 0 V, −0.5 V and −1 V.
100BASE-TX and 1000BASE-T were both designed to require a minimum of category 5 cable and also specify a maximum cable length of. Category 5 cable has since been deprecated and new installations use category 5e.

Shared cable

10BASE-T and 100BASE-TX require only two pairs to operate. Since common category 5 cable has four pairs, it is possible to use the spare pairs in 10- and 100-Mbit/s configurations for other purposes. The spare pairs may be used for power over Ethernet, for two plain old telephone service lines, or for a second 10BASE-T or 100BASE-TX connection. In practice, great care must be taken to separate these pairs as 10/100-Mbit/s Ethernet equipment electrically terminates the unused pins. Shared cable is not an option for Gigabit Ethernet as 1000BASE-T requires all four pairs to operate.

Single-pair

In addition to the more computer-oriented two and four-pair variants, the 100BASE-T1 and 1000BASE-T1 single-pair Ethernet PHYs are intended for automotive applications or as optional data channels in other interconnect applications. The single pair operates at full duplex and has a maximum reach of or up to with up to four in-line connectors. Both PHYs require a balanced twisted pair with an impedance of 100 Ω. The cable must be capable of transmitting 600 MHz for 1000BASE-T1 and 66 MHz for 100BASE-T1.
Similar to PoE, Power over Data Lines can provide up to 50 W to a device.

Autonegotiation and duplex

Ethernet over twisted pair standards up through Gigabit Ethernet define both full-duplex and half-duplex communication. However, half-duplex operation for gigabit speed is not supported by any existing hardware. Higher speed standards, 2.5GBASE-T up to 40GBASE-T running at 2.5 to 40 Gbit/s, consequently define only full-duplex point-to-point links which are generally connected by network switches, and do not support the traditional shared-medium CSMA/CD operation.
Many different modes of operations exist for Ethernet over twisted pair, and most network adapters are capable of different modes of operation. Autonegotiation is required in order to make a working 1000BASE-T connection.
When two linked interfaces are set to different duplex modes, the effect of this duplex mismatch is a network that functions much more slowly than its nominal speed. Duplex mismatch may be inadvertently caused when an administrator configures an interface to a fixed mode and fails to configure the remote interface, leaving it set to autonegotiate. Then, when the autonegotiation process fails, half duplex is assumed by the autonegotiating side of the link.

Variants

NameStandardStatusSpeed Pairs requiredLanes per directionBits per hertzLine codeSymbol rate per lane Bandwidth Max distance CableCable rating Usage
StarLAN-1 1BASE51211PE11250voice grade~12LAN
StarLAN-1010211PE1010~100voice grade~12LAN
LattisNet10211PE1010100voice grade~12LAN
10211PE1010100Cat 316LAN
101115Automotive, IoT, M2M
10111000Automotive, IoT, M2M
100112.6PAM-3 4B/3B7537.515Cat 5e100Automotive, IoT, M2M
100224LFSR PAM-52512.5100Cat 316
100432.68B6T PAM-3 Half-duplex only2512.5100Cat 316
100441.65B6B Half-duplex only3015100Cat 316
100213.24B5B MLT-3 NRZ-I12531.25100Cat 5100LAN
1000444TCM 4D-PAM-512562.5100Cat 5100LAN
1000424PAM-5250125100Cat 6250
1000112.6PAM-3 80B/81B RS-FEC75037540Cat 6A500Automotive, IoT, M2M
2500446.2564B65B PAM-16 128-DSQ200100100Cat 5e100LAN
5000446.2564B65B PAM-16 128-DSQ400200100Cat 6250LAN
10000446.2564B65B PAM-16 128-DSQ800400100Cat 6A500LAN
25000446.25PAM-16 RS-FEC LDPC2000100030Cat 82000Data centres
40000446.25PAM-16 RS-FEC LDPC3200160030Cat 82000Data centres