Event Horizon Telescope


The Event Horizon Telescope is a large telescope array consisting of a global network of radio telescopes. The EHT project combines data from several very-long-baseline interferometry stations around Earth with angular resolution sufficient to observe objects the size of a supermassive black hole's event horizon. The project's observational targets include the two black holes with the largest angular diameter as observed from Earth: the black hole at the center of the supergiant elliptical galaxy Messier 87, and Sagittarius A* at the center of the Milky Way.
The Event Horizon Telescope project is an international collaboration launched in 2009 after a long period of theoretical and technical developments. On the theory side, work on the photon orbit and first simulations of what a black hole would look like progressed to predictions of VLBI imaging for the Galactic Center black hole, Sgr A*. Technical advances in radio observing moved from the first detection of Sgr A*, through VLBI at progressively shorter wavelengths, ultimately leading to detection of horizon scale structure in both Sgr A* and M87. The collaboration now comprises over 300 members, 60 institutions, working over 20 countries and regions.
The first image of a black hole, at the center of galaxy Messier 87, was published by the EHT Collaboration on April 10, 2019, in a series of six scientific publications. The array made this observation at a wavelength of 1.3 mm and with a theoretical diffraction-limited resolution of. Future plans involve improving the array's resolution by adding new telescopes and by taking shorter-wavelength observations.

Telescope array

The EHT is composed of many radio observatories or radio telescope facilities around the world, working together to produce a high-sensitivity, high-angular-resolution telescope. Through the technique of very-long-baseline interferometry, many independent radio antennas separated by hundreds or thousands of kilometres can act as a phased array, a virtual telescope which can be pointed electronically, with an effective aperture which is the diameter of the entire planet. The effort includes development and deployment of submillimeter dual polarization receivers, highly stable frequency standards to enable very-long-baseline interferometry at 230–450 GHz, higher-bandwidth VLBI backends and recorders, as well as commissioning of new submillimeter VLBI sites.
Each year since its first data capture in 2006, the EHT array has moved to add more observatories to its global network of radio telescopes. The first image of the Milky Way's supermassive black hole, Sagittarius A*, was expected to be produced in April 2017, but because the South Pole Telescope is closed during winter, the data shipment delayed the processing to December 2017 when the shipment arrived.
Data collected on hard drives are transported by commercial freight airplanes from the various telescopes to the MIT Haystack Observatory and the Max Planck Institute for Radio Astronomy, where the data are cross-correlated and analyzed on a grid computer made from about 800 CPUs all connected through a network.
Because of COVID-19 pandemic, weather patterns, and celestial mechanics, the 2020 observational campaign was postponed to March 2021.

Messier 87*

The Event Horizon Telescope Collaboration announced its first results in six simultaneous press conferences worldwide on April 10, 2019. The announcement featured the first direct image of a black hole, which showed the supermassive black hole at the center of Messier 87, designated M87*. The scientific results were presented in a series of six papers published in The Astrophysical Journal Letters.
The image provided a test for Albert Einstein's general theory of relativity under extreme conditions. Studies have previously tested general relativity by looking at the motions of stars and gas clouds near the edge of a black hole. However, an image of a black hole brings observations even closer to the event horizon. Relativity predicts a dark shadow-like region, caused by gravitational bending and capture of light, which matches the observed image. The published paper states: "Overall, the observed image is consistent with expectations for the shadow of a spinning Kerr black hole as predicted by general relativity." Paul T.P. Ho, EHT Board member, said: "Once we were sure we had imaged the shadow, we could compare our observations to extensive computer models that include the physics of warped space, superheated matter, and strong magnetic fields. Many of the features of the observed image match our theoretical understanding surprisingly well."
The image also provided new measurements for the mass and diameter of M87*. EHT measured the black hole's mass to be and measured the diameter of its event horizon to be approximately, roughly 2.5 times smaller than the shadow that it casts, seen at the center of the image. Previous observations of M87 showed that the large-scale jet is inclined at an angle of 17° relative to the observer's line of sight and oriented on the plane of the sky at a position angle of −72°. From the enhanced brightness of the southern part of the ring due to relativistic beaming of approaching funnel wall jet emission, EHT concluded the black hole, which anchors the jet, spins clockwise, as seen from Earth. EHT simulations allow for both prograde and retrograde inner disk rotation with respect to the black hole, while excluding zero black hole spin using a conservative minimum jet power of 1042 erg/s via the Blandford-Znajek process.
Producing an image from data from an array of radio telescopes requires much mathematical work. Four independent teams created images to assess the reliability of the results. These methods included both an established algorithm in radio astronomy for image reconstruction known as CLEAN, invented by Jan Högbom, as well as self-calibrating image processing methods for astronomy such as the CHIRP algorithm created by Katherine Bouman and others. The algorithms that were ultimately used were a regularized maximum likelihood algorithm and the CLEAN algorithm.
In March 2020, astronomers proposed a way of better seeing more of the rings in the first black hole image.

3C 279

In April 2020, the EHT released the first 20 microarcsecond resolution images of the archetypal blazar 3C 279 it observed in April 2017. These images, generated from observations over 4 nights in April 2017, reveal bright components of a jet whose projection on the observer plane exhibit apparent superluminal motions with speeds up to 20 c. Such apparent superluminal motion from relativistic emitters such as an approaching jet is explained by emission originating closer to the observer catching up with emission originating further from the observer as the jet propagates close to the speed of light at small angles to the line of sight.

Collaboration

The EHT Collaboration consists of 13 stakeholder institutes:
Institutions affiliated with the EHT include: