Fatty acid


In chemistry, particularly in biochemistry, a fatty acid is a carboxylic acid with a long aliphatic chain, which is either saturated or unsaturated. Most naturally occurring fatty acids have an unbranched chain of an even number of carbon atoms, from 4 to 28. Fatty acids are usually not found in organisms in their standalone form, but instead exist as three main classes of esters: triglycerides, phospholipids, and cholesteryl esters. In any of these forms, fatty acids are both important dietary sources of fuel for animals and they are important structural components for cells.

History

The concept of fatty acid was introduced by Michel Eugène Chevreul, though he initially used some variant terms: graisse acide and acide huileux.

Types of fatty acids

Fatty acids are classified in many ways: by length, by saturation vs unsaturation, by even vs odd carbon content, and by linear vs branched.

Length of fatty acids

Saturated fatty acids have no C=C double bonds. They have the same formula CH3nCOOH, with variations in "n". An important saturated fatty acid is stearic acid, which when neutralized with lye is the most common form of soap.
Common nameChemical structureC:D
Caprylic acidCH36COOH8:0
Capric acidCH38COOH10:0
Lauric acidCH310COOH12:0
Myristic acidCH312COOH14:0
Palmitic acidCH314COOH16:0
Stearic acidCH316COOH18:0
Arachidic acidCH318COOH20:0
Behenic acidCH320COOH22:0
Lignoceric acidCH322COOH24:0
Cerotic acidCH324COOH26:0

Unsaturated fatty acids

Unsaturated fatty acids have one or more C=C double bonds. The C=C double bonds can give either cis or trans isomers.
; cis : A cis configuration means that the two hydrogen atoms adjacent to the double bond stick out on the same side of the chain. The rigidity of the double bond freezes its conformation and, in the case of the cis isomer, causes the chain to bend and restricts the conformational freedom of the fatty acid. The more double bonds the chain has in the cis configuration, the less flexibility it has. When a chain has many cis bonds, it becomes quite curved in its most accessible conformations. For example, oleic acid, with one double bond, has a "kink" in it, whereas linoleic acid, with two double bonds, has a more pronounced bend. α-Linolenic acid, with three double bonds, favors a hooked shape. The effect of this is that, in restricted environments, such as when fatty acids are part of a phospholipid in a lipid bilayer, or triglycerides in lipid droplets, cis bonds limit the ability of fatty acids to be closely packed, and therefore can affect the melting temperature of the membrane or of the fat.
; trans : A trans configuration, by contrast, means that the adjacent two hydrogen atoms lie on opposite sides of the chain. As a result, they do not cause the chain to bend much, and their shape is similar to straight saturated fatty acids.
In most naturally occurring unsaturated fatty acids, each double bond has three, six, or nine carbon atoms after it, and all double bonds have a cis configuration. Most fatty acids in the trans configuration are not found in nature and are the result of human processing. Some trans fatty acids also occur naturally in the milk and meat of ruminants. They are produced, by fermentation, in the rumen of these animals. They are also found in dairy products from milk of ruminants, and may be also found in breast milk of women who obtained them from their diet.
The geometric differences between the various types of unsaturated fatty acids, as well as between saturated and unsaturated fatty acids, play an important role in biological processes, and in the construction of biological structures.

Even- vs odd-chained fatty acids

Most fatty acids are even-chained, e.g. stearic and oleic, meaning that an even number of carbon atoms comprise them. Some fatty acids have odd numbers of carbon; they are referred to as odd-chained fatty acids. The most common OCFA are the saturated C15 and C17 derivatives, respectively pentadecanoic acid and heptadecanoic acid, which are found in dairy products. On a molecular level, OCFAs are biosynthesized and metabolized slightly differently from the even-chained relatives.

Nomenclature

Numbering of the carbon atoms in a fatty acid

Most naturally occurring fatty acids have an unbranched chain of carbon atoms, with a carboxyl group at one end, and a methyl group at the other end. The carbon next to the carboxyl group is labeled as carbon α, using the first letter of the Greek alphabet. The next is labeled as β, and so forth. Although fatty acids can be of diverse lengths, the last position is always labelled as ω, which is the last letter in the Greek alphabet.
The position of the carbon atoms in the backbone of a fatty acid can be also indicated by numbering them, either from the −COOH end or from the −CH3 end of the carbon chain. If the position is counted from the −COOH end, then the C-x notation is used, with x=1, 2, 3, etc.. If the position is counted from the −CH3 end, then it is represented by the ω-x notation, or equivalently, by the n-x notation.
The positions of the double bonds in a fatty acid chain can, therefore, be indicated in two ways, using the C-x or the ω-x notation. Thus, in an 18 carbon fatty acid, a double bond between C-12 and C-13 is reported either as Δ12 if counted from the −COOH end, or as ω-6 if [|counting] from the −CH3 end. In both cases, only the “beginning” of the double bond is indicated. The “Δ” is the Greek letter delta, which translates into “D” in the Roman alphabet. Omega is the last letter in the Greek alphabet, and is therefore used to indicate the “last” carbon atom in the fatty acid chain. The ω-x notation is almost exclusively used to indicate the position of the double bond which is closest to the −CH3 end in fatty acids with multiple double bonds, such as the essential fatty acids.
Fatty acids with an odd number of carbon atoms are called odd-chain fatty acids, whereas the rest are even-chain fatty acids. The difference is relevant to gluconeogenesis.

Naming of fatty acids

The following table describes the most common systems of naming fatty acids.
NomenclatureExamplesExplanation
TrivialPalmitoleic acidTrivial names are non-systematic historical names, which are the most frequent naming system used in literature. Most common fatty acids have trivial names in addition to their systematic names. These names frequently do not follow any pattern, but they are concise and often unambiguous.
Systematiccis-9-octadec-9-enoic acid
-octadec-9-enoic acid
Systematic names derive from the standard IUPAC Rules for the Nomenclature of Organic Chemistry, published in 1979, along with a recommendation published specifically for lipids in 1977. [|Carbon atom numbering] begins from the carboxylic end of the molecule backbone. Double bonds are labelled with cis-/trans- notation or E-/Z- notation, where appropriate. This notation is generally more verbose than common nomenclature, but has the advantage of being more technically clear and descriptive.
Δxcis9, cis12 octadecadienoic acidIn Δx nomenclature, each double bond is indicated by Δx, where the double bond begins at the xth carbon–carbon bond, counting from carboxylic end of the molecule backbone. Each double bond is preceded by a cis- or trans- prefix, indicating the configuration of the molecule around the bond. For example, linoleic acid is designated "cis9, cis12 octadecadienoic acid". This nomenclature has the advantage of being less verbose than systematic nomenclature, but is no more technically clear or descriptive.
nx
n−3
nx nomenclature both provides names for individual compounds and classifies them by their likely biosynthetic properties in animals. A double bond is located on the xth carbon–carbon bond, counting from the methyl end of the molecule backbone. For example, α-Linolenic acid is classified as a n−3 or omega-3 fatty acid, and so it is likely to share a biosynthetic pathway with other compounds of this type. The ω−x, omega-x, or "omega" notation is common in popular nutritional literature, but IUPAC has deprecated it in favor of nx notation in technical documents. The most commonly researched fatty acid biosynthetic pathways are n−3 and n−6.
Lipid numbers18:3
18:3n3
18:3, cis,cis,cis91215
18:3
Lipid numbers take the form C:D, where C is the number of carbon atoms in the fatty acid and D is the number of double bonds in the fatty acid. If D is more than one, the double bonds are assumed to be interrupted by units, i.e., at intervals of 3 carbon atoms along the chain. For instance, α-Linolenic acid is an 18:3 fatty acid and its three double bonds are located at positions Δ9, Δ12, and Δ15. This notation can be ambiguous, as some different fatty acids can have the same C:D numbers. Consequently, when ambiguity exists this notation is usually paired with either a Δx or nx term. For instance, although α-Linolenic acid and γ-Linolenic acid are both 18:3, they may be unabiguously described as 18:3n3 and 18:3n6 fatty acids, respectively. For the same purpose, IUPAC recommends using a list of double bond positions in parentheses, appended to the C:D notation. For instance, IUPAC recommended notations for α-and γ-Linolenic acid are 18:3 and 18:3, respectively.

Free fatty acids

When circulating in the plasma, not in their ester, fatty acids are known as non-esterified fatty acids or free fatty acids. FFAs are always bound to a transport protein, such as albumin.

Production

Industrial

Fatty acids are usually produced industrially by the hydrolysis of triglycerides, with the removal of glycerol. Phospholipids represent another source. Some fatty acids are produced synthetically by hydrocarboxylation of alkenes.

Hyper-oxygenated fatty acids

Hyper-oxygenated fatty acids are produced by a specific industrial processes for topical skin creams. The process is based on the introduction or saturation of peroxides into fatty acid esters via the presence of ultraviolet light and gaseous oxygen bubbling under controlled temperatures. Specifically linolenic acids have been shown to play an important role in maintaining the moisture barrier function of the skin. A study in Spain reported in the Journal of Wound Care in March 2005 compared a commercial product with a greasy placebo and that specific product was more effective and also cost-effective. A range of such OTC medical products is now widely available. However, topically applied olive oil was not found to be inferior in a "randomised triple-blind controlled non-inferiority" trial conducted in Spain during 2015. Commercial products are likely to be less messy to handle and more washable than either olive oil or petroleum jelly, both of which, if applied topically may stain clothing and bedding.

By animals

In animals, fatty acids are formed from carbohydrates predominantly in the liver, adipose tissue, and the mammary glands during lactation.
Carbohydrates are converted into pyruvate by glycolysis as the first important step in the conversion of carbohydrates into fatty acids. Pyruvate is then decarboxylated to form acetyl-CoA in the mitochondrion. However, this acetyl CoA needs to be transported into cytosol where the synthesis of fatty acids occurs. This cannot occur directly. To obtain cytosolic acetyl-CoA, citrate is removed from the citric acid cycle and carried across the inner mitochondrial membrane into the cytosol. There it is cleaved by ATP citrate lyase into acetyl-CoA and oxaloacetate. The oxaloacetate is returned to the mitochondrion as malate. The cytosolic acetyl-CoA is carboxylated by acetyl CoA carboxylase into malonyl-CoA, the first committed step in the synthesis of fatty acids.
Malonyl-CoA is then involved in a repeating series of reactions that lengthens the growing fatty acid chain by two carbons at a time. Almost all natural fatty acids, therefore, have even numbers of carbon atoms. When synthesis is complete the free fatty acids are nearly always combined with glycerol to form triglycerides, the main storage form of fatty acids, and thus of energy in animals. However, fatty acids are also important components of the phospholipids that form the phospholipid bilayers out of which all the membranes of the cell are constructed.
The "uncombined fatty acids" or "free fatty acids" found in the circulation of animals come from the breakdown of stored triglycerides. Because they are insoluble in water, these fatty acids are transported bound to plasma albumin. The levels of "free fatty acids" in the blood are limited by the availability of albumin binding sites. They can be taken up from the blood by all cells that have mitochondria. Fatty acids can only be broken down in mitochondria, by means of beta-oxidation followed by further combustion in the citric acid cycle to CO2 and water. Cells in the central nervous system, although they possess mitochondria, cannot take free fatty acids up from the blood, as the blood-brain barrier is impervious to most free fatty acids, excluding short-chain fatty acids and medium-chain fatty acids. These cells have to manufacture their own fatty acids from carbohydrates, as described above, in order to produce and maintain the phospholipids of their cell membranes, and those of their organelles.

Fatty acids in dietary fats

The following table gives the fatty acid, vitamin E and cholesterol composition of some common dietary fats.

Reactions of fatty acids

Fatty acids exhibit reactions like other carboxylic acids, i.e. they undergo esterification and acid-base reactions.

Acidity

Fatty acids do not show a great variation in their acidities, as indicated by their respective pKa. Nonanoic acid, for example, has a pKa of 4.96, being only slightly weaker than acetic acid. As the chain length increases, the solubility of the fatty acids in water decreases, so that the longer-chain fatty acids have minimal effect on the pH of an aqueous solution. Even those fatty acids that are insoluble in water will dissolve in warm ethanol, and can be titrated with sodium hydroxide solution using phenolphthalein as an indicator. This analysis is used to determine the free fatty acid content of fats; i.e., the proportion of the triglycerides that have been hydrolyzed.
Neutralization of fatty acids, i.e. saponification, is a widely practiced route to metallic soaps.

Hydrogenation and hardening

of unsaturated fatty acids is widely practiced. Typical conditions involve 2.0–3.0 MPa of H2 pressure, 150 °C, and nickel supported on silica as a catalyst. This treatment affords saturated fatty acids. The extent of hydrogenation is indicated by the iodine number. Hydrogenated fatty acids are less prone toward rancidification. Since the saturated fatty acids are higher melting than the unsaturated precursors, the process is called hardening. Related technology is used to convert vegetable oils into margarine. The hydrogenation of triglycerides is advantageous because the carboxylic acids degrade the nickel catalysts, affording nickel soaps. During partial hydrogenation, unsaturated fatty acids can be isomerized from cis to trans configuration.
More forcing hydrogenation, i.e. using higher pressures of H2 and higher temperatures, converts fatty acids into fatty alcohols. Fatty alcohols are, however, more easily produced from fatty acid esters.
In the Varrentrapp reaction certain unsaturated fatty acids are cleaved in molten alkali, a reaction which was, at one point of time, relevant to structure elucidation.

Auto-oxidation and rancidity

Unsaturated fatty acids undergo a chemical change known as auto-oxidation. The process requires oxygen and is accelerated by the presence of trace metals. Vegetable oils resist this process to a small degree because they contain antioxidants, such as tocopherol. Fats and oils often are treated with chelating agents such as citric acid to remove the metal catalysts.

Ozonolysis

Unsaturated fatty acids are susceptible to degradation by ozone. This reaction is practiced in the production of azelaic acid 7 from oleic acid.

Analysis

In chemical analysis, fatty acids are separated by gas chromatography of methyl esters; additionally, a separation of unsaturated isomers is possible by argentation thin-layer chromatography.

Circulation

Digestion and intake

and medium-chain fatty acids are absorbed directly into the blood via intestine capillaries and travel through the portal vein just as other absorbed nutrients do. However, long-chain fatty acids are not directly released into the intestinal capillaries. Instead they are absorbed into the fatty walls of the intestine villi and reassemble again into triglycerides. The triglycerides are coated with cholesterol and protein into a compound called a chylomicron.
From within the cell, the chylomicron is released into a lymphatic capillary called a lacteal, which merges into larger lymphatic vessels. It is transported via the lymphatic system and the thoracic duct up to a location near the heart. The thoracic duct empties the chylomicrons into the bloodstream via the left subclavian vein. At this point the chylomicrons can transport the triglycerides to tissues where they are stored or metabolized for energy.

Metabolism

When metabolized, fatty acids yield large quantities of ATP. Many cell types can use either glucose or fatty acids for this purpose. Fatty acids are distributed to cells to serve as a fuel for muscular contraction and general metabolism. They are broken down to CO2 and water by the intra-cellular mitochondria, releasing large amounts of energy, captured in the form of ATP through beta oxidation and the citric acid cycle.

Essential fatty acids

Fatty acids that are required for good health but cannot be made in sufficient quantity from other substrates, and therefore must be obtained from food, are called essential fatty acids. There are two series of essential fatty acids: one has a double bond three carbon atoms away from the methyl end; the other has a double bond six carbon atoms away from the methyl end. Humans lack the ability to introduce double bonds in fatty acids beyond carbons 9 and 10, as counted from the carboxylic acid side. Two essential fatty acids are linoleic acid and alpha-linolenic acid. These fatty acids are widely distributed in plant oils. The human body has a limited ability to convert ALA into the longer-chain omega-3 fatty acidseicosapentaenoic acid and docosahexaenoic acid, which can also be obtained from fish. Omega-3 and omega-6 fatty acids are biosynthetic precursors to endocannabinoids with antinociceptive, anxiolytic, and neurogenic properties.

Distribution

Blood fatty acids adopt distinct forms in different stages in the blood circulation. They are taken in through the intestine in chylomicrons, but also exist in very low density lipoproteins and low density lipoproteins after processing in the liver. In addition, when released from adipocytes, fatty acids exist in the blood as free fatty acids.
It is proposed that the blend of fatty acids exuded by mammalian skin, together with lactic acid and pyruvic acid, is distinctive and enables animals with a keen sense of smell to differentiate individuals.

Industrial uses

Fatty acids are mainly used in the production of soap, both for cosmetic purposes and, in the case of metallic soaps, as lubricants. Fatty acids are also converted, via their methyl esters, to fatty alcohols and fatty amines, which are precursors to surfactants, detergents, and lubricants. Other applications include their use as emulsifiers, texturizing agents, wetting agents, anti-foam agents, or stabilizing agents.
Esters of fatty acids with simpler alcohols are used as emollients in cosmetics and other personal care products and as synthetic lubricants. Esters of fatty acids with more complex alcohols, such as sorbitol, ethylene glycol, diethylene glycol, and polyethylene glycol are consumed in food, or used for personal care and water treatment, or used as synthetic lubricants or fluids for metal working.