Generalized extreme value distribution


In probability theory and statistics, the generalized extreme value distribution is a family of continuous probability distributions developed within extreme value theory to combine the Gumbel, Fréchet and Weibull families also known as type I, II and III extreme value distributions. By the extreme value theorem the GEV distribution is the only possible limit distribution of properly normalized maxima of a sequence of independent and identically distributed random variables. Note that a limit distribution need to exist, which requires regularity conditions on the tail of the distribution. Despite this, the GEV distribution is often used as an approximation to model the maxima of long sequences of random variables.
In some fields of application the generalized extreme value distribution is known as the Fisher–Tippett distribution, named after Ronald Fisher and L. H. C. Tippett who recognised three different forms outlined below. However usage of this name is sometimes restricted to mean the special case of the Gumbel distribution. The origin of the common functional form for all 3 distributions dates back to at least Jenkinson, A. F., though allegedly it could also have been given by Mises, R..

Specification

Using the standardized variable, where is the location parameter and is the scale parameter, the cumulative distribution function of the GEV distribution is
where is the shape parameter. Thus for, the expression is valid for, while for it is valid for. In the first case, at the lower end-point, it equals 0; in the second case, at the upper end-point, it equals 1. For the first expression is formally undefined and is replaced with the result obtained by taking the limit as in which case.
If then and ≈ whatever the values of and
The probability density function of the standardized distribution is
again valid for in the case, and for in the case. The density is zero outside of the relevant range. In the case the density is positive on the whole real line.
Since the cumulative distribution function is invertible, the quantile function for the GEV distribution has an explicit expression, namely
and therefore the quantile density function is

Summary statistics

Some simple statistics of the distribution are:
The skewness is for ξ>0
For ξ<0, the sign of the numerator is reversed.
The excess kurtosis is:
where, k=1,2,3,4, and is the gamma function.

Link to Fréchet, Weibull and Gumbel families

The shape parameter governs the tail behavior of the distribution. The sub-families defined by, and correspond, respectively, to the Gumbel, Fréchet and Weibull families, whose cumulative distribution functions are displayed below.
The subsections below remark on properties of these distributions.

Modification for minima rather than maxima

The theory here relates to data maxima and the distribution being discussed is an extreme value distribution for maxima. A generalised extreme value distribution for data minima can be obtained, for example by substituting for x in the distribution function, and subtracting from one: this yields a separate family of distributions.

Alternative convention for the Weibull distribution

The ordinary Weibull distribution arises in reliability applications and is obtained from the distribution here by using the variable, which gives a strictly positive support - in contrast to the use in the extreme value theory here. This arises because the ordinary Weibull distribution is used in cases that deal with data minima rather than data maxima. The distribution here has an addition parameter compared to the usual form of the Weibull distribution and, in addition, is reversed so that the distribution has an upper bound rather than a lower bound. Importantly, in applications of the GEV, the upper bound is unknown and so must be estimated, while when applying the ordinary Weibull distribution in reliability applications the lower bound is usually known to be zero.

Ranges of the distributions

Note the differences in the ranges of interest for the three extreme value distributions: Gumbel is unlimited, Fréchet has a lower limit, while the reversed Weibull has an upper limit.
More precisely, Extreme Value Theory describes which of the three is the limiting law according to the initial law X and in particular depending on its tail.

Distribution of log variables

One can link the type I to types II and III the following way: if the cumulative distribution function of some random variable is of type II, and with the positive numbers as support, i.e., then the cumulative distribution function of is of type I, namely. Similarly, if the cumulative distribution function of is of type III, and with the negative numbers as support, i.e., then the cumulative distribution function of is of type I, namely.

Link to logit models (logistic regression)

models, and certain other types of logistic regression, can be phrased as latent variable models with error variables distributed as Gumbel distributions. This phrasing is common in the theory of discrete choice models, which include logit models, probit models, and various extensions of them, and derives from the fact that the difference of two type-I GEV-distributed variables follows a logistic distribution, of which the logit function is the quantile function. The type-I GEV distribution thus plays the same role in these logit models as the normal distribution does in the corresponding probit models.

Properties

The cumulative distribution function of the generalized extreme value distribution solves the stability postulate equation. The generalized extreme value distribution is a special case of a max-stable distribution, and is a transformation of a min-stable distribution.

Applications

Let be iid. normally distributed random variables with mean 0 and variance 1.
The Fisher–Tippett–Gnedenko theorem tells us that
where
This allow us to estimate e.g. the mean of
from the mean of the GEV distribution:

Related distributions

  1. If then
  2. If then
  3. If then
  4. If then
  5. If then
  6. If and then .
  7. If and then . Note that.

    Proofs

4. Let, then the cumulative distribution of is:
which is the cdf for.
5. Let, then the cumulative distribution of is:
which is the cumulative distribution of.