Graph of groups


In geometric group theory, a graph of groups is an object consisting of a collection of groups indexed by the vertices and edges of a graph, together with a family of monomorphisms of the edge groups into the vertex groups.
There is a unique group, called the fundamental group, canonically associated to each finite connected graph of groups. It admits an orientation-preserving action on a tree: the original graph of groups can be recovered from the quotient graph and the stabiliser subgroups. This theory, commonly referred to as Bass–Serre theory, is due to the work of Hyman Bass and Jean-Pierre Serre.

Definition

A graph of groups over a graph is an assignment to each vertex of of a group and to each edge of of a group as well as monomorphisms and mapping into the groups assigned to the vertices at its ends.

Fundamental group

Let be a spanning tree for and define the fundamental group to be the group generated by the vertex groups and elements for each edge of with the following relations:
This definition is independent of the choice of.
The benefit in defining the fundamental groupoid of a graph of groups, as shown by, is that it is defined independently of base point or tree. Also there is proved there a nice normal form for the elements of the fundamental groupoid. This includes normal form theorems for a free product with amalgamation and for an HNN extension.

Structure theorem

Let be the fundamental group corresponding to the spanning tree. For every vertex and edge, and can be identified with their images in. It is possible to define a graph with vertices and edges the disjoint union of all coset spaces and respectively. This graph is a tree, called the universal covering tree, on which acts. It admits the graph as fundamental domain. The graph of groups given by the stabiliser subgroups on the fundamental domain corresponds to the original graph of groups.

Examples

The simplest possible generalisation of a graph of groups is a 2-dimensional complex of groups. These are modeled on orbifolds arising from cocompact properly discontinuous actions of discrete groups on 2-dimensional simplicial complexes that have the structure of CAT spaces. The quotient of the simplicial complex has finite stabiliser groups attached to vertices, edges and triangles together with monomorphisms for every inclusion of simplices. A complex of groups is said to be developable if it arises as the quotient of a CAT simplicial complex. Developability is a non-positive curvature condition on the complex of groups: it can be verified locally by checking that all circuits occurring in the links of vertices have length at least six. Such complexes of groups originally arose in the theory of 2-dimensional Bruhat–Tits buildings; their
general definition and continued study have been inspired by the ideas of Gromov.