Hearing loss
Hearing loss is a partial or total inability to hear. Hearing loss may be present at birth or acquired at any time afterwards. Hearing loss may occur in one or both ears. In children, hearing problems can affect the ability to learn spoken language and in adults it can create difficulties with social interaction and at work. Hearing loss can be temporary or permanent. Hearing loss related to age usually affects both ears and is due to cochlear hair cell loss. In some people, particularly older people, hearing loss can result in loneliness. Deaf people usually have little to no hearing.
Hearing loss may be caused by a number of factors, including: genetics, ageing, exposure to noise, some infections, birth complications, trauma to the ear, and certain medications or toxins. A common condition that results in hearing loss is chronic ear infections. Certain infections during pregnancy, such as cytomegalovirus, syphilis and rubella, may also cause hearing loss in the child. Hearing loss is diagnosed when hearing testing finds that a person is unable to hear 25 decibels in at least one ear. Testing for poor hearing is recommended for all newborns. Hearing loss can be categorized as mild, moderate, moderate-severe, severe, or profound. There are three main types of hearing loss: conductive hearing loss, sensorineural hearing loss, and mixed hearing loss.
About half of hearing loss globally is preventable through public health measures. Such practices include immunization, proper care around pregnancy, avoiding loud noise, and avoiding certain medications. The World Health Organization recommends that young people limit exposure to loud sounds and the use of personal audio players to an hour a day in an effort to limit exposure to noise. Early identification and support are particularly important in children. For many hearing aids, sign language, cochlear implants and subtitles are useful. Lip reading is another useful skill some develop. Access to hearing aids, however, is limited in many areas of the world.
As of 2013 hearing loss affects about 1.1 billion people to some degree. It causes disability in about 466 million people, and moderate to severe disability in 124 million people. Of those with moderate to severe disability 108 million live in low and middle income countries. Of those with hearing loss, it began during childhood for 65 million. Those who use sign language and are members of Deaf culture see themselves as having a difference rather than an illness. Most members of Deaf culture oppose attempts to cure deafness and some within this community view cochlear implants with concern as they have the potential to eliminate their culture. The term hearing impairment is often viewed negatively as it emphasizes what people cannot do.
Definition
- Hearing loss is defined as diminished acuity to sounds which would otherwise be heard normally. The terms hearing impaired or hard of hearing are usually reserved for people who have relative inability to hear sound in the speech frequencies. The severity of hearing loss is categorized according to the increase in intensity of sound above the usual level required for the listener to detect it.
- Deafness is defined as a degree of loss such that a person is unable to understand speech, even in the presence of amplification. In profound deafness, even the highest intensity sounds produced by an audiometer may not be detected. In total deafness, no sounds at all, regardless of amplification or method of production, can be heard.
- Speech perception is another aspect of hearing which involves the perceived clarity of a word rather than the intensity of sound made by the word. In humans, this is usually measured with speech discrimination tests, which measure not only the ability to detect sound, but also the ability to understand speech. There are very rare types of hearing loss that affect speech discrimination alone. One example is auditory neuropathy, a variety of hearing loss in which the outer hair cells of the cochlea are intact and functioning, but sound information is not faithfully transmitted by the auditory nerve to the brain.
Hearing standards
Human hearing extends in frequency from 20 to 20,000 Hz, and in intensity from 0 dB to 120 dB HL or more. 0 dB does not represent absence of sound, but rather the softest sound an average unimpaired human ear can hear; some people can hear down to −5 or even −10 dB. Sound is generally uncomfortably loud above 90 dB and 115 dB represents the threshold of pain. The ear does not hear all frequencies equally well: hearing sensitivity peaks around 3000 Hz. There are many qualities of human hearing besides frequency range and intensity that cannot easily be measured quantitatively. However, for many practical purposes, normal hearing is defined by a frequency versus intensity graph, or audiogram, charting sensitivity thresholds of hearing at defined frequencies. Because of the cumulative impact of age and exposure to noise and other acoustic insults, 'typical' hearing may not be normal.Signs and symptoms
- difficulty using the telephone
- loss of sound localization
- difficulty understanding speech, especially of children and women whose voices are of a higher frequency.
- difficulty understanding speech in the presence of background noise
- sounds or speech sounding dull, muffled or attenuated
- need for increased volume on television, radio, music and other audio sources
- pain or pressure in the ears
- a blocked feeling
- hyperacusis, heightened sensitivity with accompanying auditory pain to certain intensities and frequencies of sound, sometimes defined as "auditory recruitment"
- tinnitus, ringing, buzzing, hissing or other sounds in the ear when no external sound is present
- vertigo and disequilibrium
- tympanophonia, also known as autophonia, abnormal hearing of one's own voice and respiratory sounds, usually as a result of a patulous eustachian tube or dehiscent superior semicircular canals
- disturbances of facial movement or in persons with Bell's Palsy
Complications
Cognitive decline
Hearing loss is an increasing concern especially in aging populations, the prevalence of hearing loss increase about two-fold for each decade increase in age after age 40. While the secular trend might decrease individual level risk of developing hearing loss, the prevalence of hearing loss is expected to rise due to the aging population in the US. Another concern about aging process is cognitive decline, which may progress to mild cognitive impairment and eventually dementia. The association between hearing loss and cognitive decline has been studied in various research settings. Despite the variability in study design and protocols, the majority of these studies have found consistent association between age-related hearing loss and cognitive decline, cognitive impairment, and dementia. The association between age-related hearing loss and Alzheimer's disease was found to be nonsignificant, and this finding supports the hypothesis that hearing loss is associated with dementia independent of Alzheimer pathology. There are several hypothesis about the underlying causal mechanism for age-related hearing loss and cognitive decline. One hypothesis is that this association can be explained by common etiology or shared neurobiological pathology with decline in other physiological system. Another possible cognitive mechanism emphasize on individual's cognitive load. As people developing hearing loss in the process of aging, the cognitive load demanded by auditory perception increases, which may lead to change in brain structure and eventually to dementia. One other hypothesis suggests that the association between hearing loss and cognitive decline is mediated through various psychosocial factors, such as decrease in social contact and increase in social isolation. Findings on the association between hearing loss and dementia have significant public health implication, since about 9% of dementia cases can be attributed to hearing loss.Falls
have important health implications, especially for an aging population where they can lead to significant morbidity and mortality. Elderly people are particularly vulnerable to the consequences of injuries caused by falls, since older individuals typically have greater bone fragility and poorer protective reflexes. Fall-related injury can also lead to burdens on the financial and health care systems. In literature, age-related hearing loss is found to be significantly associated with incident falls. There is also a potential dose-response relationship between hearing loss and falls---greater severity of hearing loss is associated with increased difficulties in postural control and increased prevalence of falls. The underlying causal link between the association of hearing loss and falls is yet to be elucidated. There are several hypotheses that indicate that there may be a common process between decline in auditory system and increase in incident falls, driven by physiological, cognitive, and behavioral factors. This evidence suggests that treating hearing loss has potential to increase health-related quality of life in older adults.Depression
is one of the leading causes of morbidity and mortality worldwide. In older adults, the suicide rate is higher than it is for younger adults, and more suicide cases are attributable to depression. Different studies have been done to investigate potential risk factors that can give rise to depression in later life. Some chronic diseases are found to be significantly associated with risk of developing depression, such as coronary heart disease, pulmonary disease, vision loss and hearing loss. Hearing loss can attribute to decrease in health-related quality of life, increase in social isolation and decline in social engagement, which are all risk factors for increased risk of developing depression symptoms.Spoken language ability
is hearing loss that is sustained after the acquisition of language, which can occur due to disease, trauma, or as a side-effect of a medicine. Typically, hearing loss is gradual and often detected by family and friends of affected individuals long before the patients themselves will acknowledge the disability. Post-lingual deafness is far more common than pre-lingual deafness. Those who lose their hearing later in life, such as in late adolescence or adulthood, face their own challenges, living with the adaptations that allow them to live independently.Prelingual deafness is profound hearing loss that is sustained before the acquisition of language, which can occur due to a congenital condition or through hearing loss before birth or in early infancy. Prelingual deafness impairs an individual's ability to acquire a spoken language in children, but deaf children can acquire spoken language through support from cochlear implants. Non-signing parents of deaf babies usually go with oral approach without the support of sign language as the these families lack previous experience with sign language and cannot competently provide it to their children. Unfortunately, this may in some rare cases bring the risk of language deprivation for the deaf baby because the deaf baby wouldn't have a sign language if the child is unable to acquire spoken language successfully. The 5-10% of cases of deaf babies born into signing families have the potential of age-appropriate development of language due to early exposure to sign language by sign-competent parents, thus they have the potential to meet language milestones, but in sign language in lieu of spoken language.
Causes
Hearing loss has multiple causes, including ageing, genetics, perinatal problems and acquired causes like noise and disease. For some kinds of hearing loss the cause may be classified as of unknown cause.Age
There is a progressive loss of ability to hear high frequencies with aging known as presbycusis. For men, this can start as early as 25 and women at 30. Although genetically variable it is a normal concomitant of ageing and is distinct from hearing losses caused by noise exposure, toxins or disease agents. Common conditions that can increase the risk of hearing loss in elderly people are high blood pressure, diabetes or the use of certain medications harmful to the ear. While everyone loses hearing with age, the amount and type of hearing loss is variable.Noise
Noise exposure is the cause of approximately half of all cases of hearing loss, causing some degree of problems in 5% of the population globally.The National Institute for Occupational Safety and Health recognizes that the majority of hearing loss is not due to age, but due to noise exposure. By correcting for age in assessing hearing, one tends to overestimate the hearing loss due to noise for some and underestimate it for others.
Hearing loss due to noise may be temporary, called a 'temporary threshold shift', a reduced sensitivity to sound over a wide frequency range resulting from exposure to a brief but very loud noise like a gunshot, firecracker, jet engine, jackhammer, etc. or to exposure to loud sound over a few hours such as during a pop concert or nightclub session. Recovery of hearing is usually within 24 hours, but may take up to a week. Both constant exposure to loud sounds and one-time exposure to extremely loud sounds may cause permanent hearing loss.
Noise-induced hearing loss typically manifests as elevated hearing thresholds between 3000 and 6000 Hz, centred at 4000 Hz. As noise damage progresses, damage spreads to affect lower and higher frequencies. On an audiogram, the resulting configuration has a distinctive notch, called a 'noise' notch. As ageing and other effects contribute to higher frequency loss, this notch may be obscured and entirely disappear.
Various governmental, industry and standards organizations set noise standards.
The U.S. Environmental Protection Agency has identified the level of 70 dB for 24‑hour exposure as the level necessary to protect the public from hearing loss and other disruptive effects from noise, such as sleep disturbance, stress-related problems, learning detriment, etc. Noise levels are typically in the 65 to 75 dB range for those living near airports or freeways and may result in hearing damage if sufficient time is spent outdoors.
Louder sounds cause damage in a shorter period of time. Estimation of a "safe" duration of exposure is possible using an exchange rate of 3 dB. As 3 dB represents a doubling of the intensity of sound, duration of exposure must be cut in half to maintain the same energy dose. For workplace noise regulation, the "safe" daily exposure amount at 85 dB A, known as an exposure action value, is 8 hours, while the "safe" exposure at 91 dB is only 2 hours.
Different standards use exposure action values between 80dBA and 90dBA. Note that for some people, sound may be damaging at even lower levels than 85 dB A. Exposures to other ototoxins can lead to greater susceptibility to noise damage, as well as causing its own damage. This is called a synergistic interaction. Since noise damage is cumulative over long periods of time, persons who are exposed to non-workplace noise, like recreational activities or environmental noise, may have compounding damage from all sources.
Some national and international organizations and agencies use an exchange rate of 4 dB or 5 dB. While these exchange rates may indicate a wider zone of comfort or safety, they can significantly underestimate the damage caused by loud noise. For example, at 100 dB, a 3 dB exchange rate would limit exposure to 15 minutes; the 5 dB exchange rate allows an hour.
Many people are unaware of the presence of environmental sound at damaging levels, or of the level at which sound becomes harmful. Common sources of damaging noise levels include car stereos, children's toys, motor vehicles, crowds, lawn and maintenance equipment, power tools, gun use, musical instruments, and even hair dryers. Noise damage is cumulative; all sources of damage must be considered to assess risk. If one is exposed to loud sound at high levels or for extended durations, then hearing loss will occur. Sound intensity increases dramatically with proximity according to an inverse square law: halving the distance to the sound quadruples the sound intensity.
In the US, 12.5% of children aged 6–19 years have permanent hearing damage from excessive noise exposure. The World Health Organization estimates that half of those between 12 and 35 are at risk from using personal audio devices that are too loud.
Hearing loss due to noise has been described as primarily a condition of modern society. In preindustrial times, humans had far less exposure to loud sounds. Studies of primitive peoples indicate that much of what has been attributed to age-related hearing loss may be long term cumulative damage from all sources, especially noise. People living in preindustrial societies have considerably less hearing loss than similar populations living in modern society. Among primitive people who have migrated into modern society, hearing loss is proportional to the number of years spent in modern society. Military service in World War II, the Korean War, and the Vietnam War, has likely also caused hearing loss in large numbers of men from those generations, though proving that hearing loss was a direct result of military service is problematic without entry and exit audiograms.
Hearing loss in adolescents may be caused by loud noise from toys, music by headphones, and concerts or events. In 2017, the Centers for Disease Control and Prevention brought their researchers together with experts from the World Health Organization and academia to examine the risk of hearing loss from excessive noise exposure in and outside the workplace in different age groups, as well as actions being taken to reduce the burden of the condition. A summary report was published in 2018.
Genetic
Hearing loss can be inherited. Around 75–80% of all these cases are inherited by recessive genes, 20–25% are inherited by dominant genes, 1–2% are inherited by X-linked patterns, and fewer than 1% are inherited by mitochondrial inheritance.When looking at the genetics of deafness, there are 2 different forms, syndromic and nonsyndromic. Syndromic deafness occurs when there are other signs or medical problems aside from deafness in an individual. This accounts for around 30% of deaf individuals who are deaf from a genetic standpoint. Nonsyndromic deafness occurs when there are no other signs or medical problems associated with an individual other than deafness. From a genetic standpoint, this accounts for the other 70% of cases, and represents the majority of hereditary hearing loss. Syndromic cases occur with disorders such as Usher syndrome, Stickler syndrome, Waardenburg syndrome, Alport's syndrome, and neurofibromatosis type 2. These are diseases that have deafness as one of the symptoms or as a common feature associated with it. Many of the genetic mutations giving rise to syndromic deafness have been identified. In nonsyndromic cases, where deafness is the only finding, it is more difficult to identify the genetic mutation although some have been discovered.
- Gene mapping has identified the genetic locations for several nonsyndromic dominant and recessive forms of deafness. The first gene mapped for non-syndromic deafness, DFNA1, involves a splice site mutation in the formin related homolog diaphanous 1. A single base change in a large Costa Rican family was identified as causative in a rare form of low frequency onset progressive hearing loss with autosomal dominant inheritance exhibiting variable age of onset and complete penetrance by age 30. The most common type of congenital hearing loss in developed countries is DFNB1, also known as connexin 26 deafness or GJB2-related deafness.
- The most common dominant syndromic forms of hearing loss include Stickler syndrome and Waardenburg syndrome.
- The most common recessive syndromic forms of hearing loss are Pendred syndrome and Usher syndrome.
- The congenital defect microtia, deformed or unformed outer ear, can be associated with partial or complete conductive deafness, depending upon the severity of the deformity and whether the middle ear is also affected. It can also be associated with abnormalities of the inner ear giving rise to an additional sensorineural component to the hearing loss.
- Dozens of additional genes for nonsyndromic deafness have been identified.
Perinatal problems
- Fetal alcohol spectrum disorders are reported to cause hearing loss in up to 64% of infants born to alcoholic mothers, from the ototoxic effect on the developing fetus plus malnutrition during pregnancy from the excess alcohol intake.
- Premature birth can be associated with sensorineural hearing loss because of an increased risk of hypoxia, hyperbilirubinaemia, ototoxic medication and infection as well as noise exposure in the neonatal units. The risk of hearing loss is greatest for those weighing less than 1500 g at birth.
Disorders
- Auditory neuropathy a disorder of poor speech perception even though the tympanic membrane, middle ear structures, and cochlear nerve are intact. People with auditory neuropathy may have normal hearing or hearing loss ranging from mild to severe.
- Inherited disorders
- * People with Down syndrome are more likely to have hearing loss. This is usually due to middle ear effusions in childhood but towards the end of the second decade they may develop a high frequency sensorineural hearing loss which may progressively worsen.
- *Charcot–Marie–Tooth disease variant 1E is noted for demyelinating in addition to deafness.
- *Autoimmune disease is recognized as a cause for cochlear damage. Although rare, it is possible for autoimmune processes to target the cochlea specifically as a first presentation. Granulomatosis with polyangiitis is one of the autoimmune conditions that may precipitate hearing loss. Cogan's syndrome commonly presents with hearing loss.
- *Multiple sclerosis can have an effect on hearing as well. Multiple sclerosis, or MS, is an autoimmune disease where the immune system attacks the myelin sheath, a covering that protects the nerves. If the auditory nerve becomes damaged, the affected person will become completely deaf in one or both ears. There is no cure for MS.
- Meningitis may damage the auditory nerve or the cochlea.
- Cholesteatoma is a benign collection of squamous epithelial cells within the middle ear. Acquired cholesteatomas are commonly caused by repeated middle ear infections
- Otosclerosis is a condition that can cause fixation of the stapes in the middle ear preventing its movement and causing a conductive hearing loss.
- Perilymph fistula – a microtear in either the round or oval window of the cochlea causing perilymph to leak into the middle ear. This usually occurs as a consequence of trauma, including barotrauma, and can give rise to vertigo as well as hearing loss.
- Ménière's disease occurs when there is an elevated pressure in the endolymph in the cochlea. Its symptoms include fluctuating low frequency hearing loss, aural fullness, tinnitus, and dizziness lasting for hours
- Recurring ear infections or concomitant secondary infections can result in hearing loss
- Strokes – Depending on what blood vessels are affected by the stroke, one of the symptoms can be deafness
- Superior semicircular canal dehiscence, a gap in the bone cover above the inner ear, can lead to low-frequency conductive hearing loss, autophony and vertigo.
- Syndromic hearing loss can be either conductive or sensorineural. It occurs with abnormalities in other parts of the bodies. Examples include Pierre Robin, Treacher-Collins, Retinitis Pigmentosa, Pedreds, and Turners syndrome, among others.
- Syphilis is commonly transmitted from pregnant women to their fetuses, and about a third of infected children will eventually become deaf.
- Vestibular schwannoma, erroneously known as Acoustic neuromas, and other types of brain tumors can cause hearing loss by infringement of the tumor on the vestibulocochlear nerve
- Viral infections of the ear can cause sensorineural hearing loss usually as the consequence of a labyrinthitis. The person may be generally unwell at the time.
- *Measles may cause auditory nerve damage but usually gives rise to a chronic middle ear problem giving rise to a mixed hearing loss.
- *Mumps may result in profound sensorineural hearing loss, unilateral or bilateral.
- * congenital rubella syndrome, can cause deafness in newborns
- * several varieties of herpes viruses that cause other diseases can also infect the ear, and can result in hearing loss: congenital infection with cytomegalovirus is responsible for deafness in newborn children and also progressive sensorineural hearing loss in childhood; herpes simplex type 1, oral herpes associated with cold sores; Epstein Barr virus that causes mononucleosis; varicella zoster oticus that causes facial paralysis
- * People with HIV/AIDS may develop hearing problems due to medications they take for the disease, the HIV virus, or due to an increased rate of other infections.
- *West Nile virus, which can cause a variety of neurological disorders, can also cause hearing loss by attacking the auditory nerve.
Medications
In 2007, the U.S. Food and Drug Administration warned about possible sudden hearing loss from PDE5 inhibitors, which are used for erectile dysfunction.
Audiologic monitoring for ototoxicity allows for the early detection of changes to hearing status presumably attributed to a drug/treatment regime so that changes in the drug regimen may be considered, and audiologic intervention when handicapping hearing impairment has occurred.
Co-administration of anti-oxidants and ototoxic medications may limit the extent of the ototoxic damage
Chemicals
In addition to medications, hearing loss can also result from specific chemicals in the environment: metals, such as lead; solvents, such as toluene ; and asphyxiants. Combined with noise, these ototoxic chemicals have an additive effect on a person's hearing loss.Hearing loss due to chemicals starts in the high frequency range and is irreversible. It damages the cochlea with lesions and degrades central portions of the auditory system. For some ototoxic chemical exposures, particularly styrene, the risk of hearing loss can be higher than being exposed to noise alone. The effects is greatest when the combined exposure include impulse noise.
- Solvents
- *toluene, styrene, xylene, n-hexane, ethyl benzene, white spirits/Stoddard, carbon disulfide, jet fuel, perchloroethylene, trichloroethylene, p-xylene
- Asphyxiants
- *carbon monoxide, hydrogen cyanide
- Heavy metals
- *lead, mercury, cadmium, arsenic, tin-hydrocarbon compounds
- Pesticides and herbicides – The evidence is weak regarding association between herbicides and hearing loss; hearing loss in such circumstances may be due to concommitant exposure to insecticides.
- *paraquat, organophosphates
Physical trauma
There can be damage either to the ear, whether the external or middle ear, to the cochlea, or to the brain centers that process the aural information conveyed by the ears. Damage to the middle ear may include fracture and discontinuity of the ossicular chain. Damage to the inner ear may be caused by temporal bone fracture. People who sustain head injury are especially vulnerable to hearing loss or tinnitus, either temporary or permanent.Pathophysiology
Sound waves reach the outer ear and are conducted down the ear canal to the eardrum, causing it to vibrate. The vibrations are transferred by the 3 tiny ear bones of the middle ear to the fluid in the inner ear. The fluid moves hair cells, and their movement generates nerve impulses which are then taken to the brain by the cochlear nerve. The auditory nerve takes the impulses to the brainstem, which sends the impulses to the midbrain. Finally, the signal goes to the auditory cortex of the temporal lobe to be interpreted as sound.Hearing loss is most commonly caused by long-term exposure to loud noises, from recreation or from work, that damage the hair cells, which do not grow back on their own.
Older people may lose their hearing from long exposure to noise, changes in the inner ear, changes in the middle ear, or from changes along the nerves from the ear to the brain.
Diagnosis
Identification of a hearing loss is usually conducted by a general practitioner medical doctor, otolaryngologist, certified and licensed audiologist, school or industrial audiometrist, or other audiometric technician. Diagnosis of the cause of a hearing loss is carried out by a specialist physician or otorhinolaryngologist.Case history
A case history can provide valuable information about the context of the hearing loss, and indicate what kind of diagnostic procedures to employ. Case history will include such items as:- major concern
- birth and pregnancy information
- medical history
- development history
- family history
- workplace environment
- home environment
Examination
- otoscopy, visual examination of the outer ear, ear canal, eardrum, and middle ear using an optical instrument inserted into the ear canal called an otoscope
- tympanometry
- differential testing – the Weber, Rinne, Bing and Schwabach tests are simple manual tests of auditory function conducted with a low frequency tuning fork that can provide a quick indication of type of hearing loss: unilateral/bilateral, conductive, or other
Laboratory testing
Hearing tests
Hearing loss is generally measured by playing generated or recorded sounds, and determining whether the person can hear them. Hearing sensitivity varies according to the frequency of sounds. To take this into account, hearing sensitivity can be measured for a range of frequencies and plotted on an audiogram.Other method for quantifying hearing loss is a hearing test using a mobile application or hearing aid application, which includes a hearing test. Hearing diagnosis using mobile application is similar to the audiometry procedure. As a result of hearing test, hearing thresholds at different frequencies are determined. Despite the errors in the measurements, application can help to diagnose hearing loss. Audiogram, obtained using mobile application, can be used to adjust hearing aid application.
Another method for quantifying hearing loss is a speech-in-noise test. As the name implies, a speech-in-noise test gives an indication of how well one can understand speech in a noisy environment. A person with a hearing loss will often be less able to understand speech, especially in noisy conditions. This is especially true for people who have a sensorineural loss – which is by far the most common type of hearing loss. As such, speech-in-noise tests can provide valuable information about a person's hearing ability, and can be used to detect the presence of a sensorineural hearing loss. A recently developed digit-triple speech-in-noise test may be a more efficient screening test.
Otoacoustic emissions test is an objective hearing test that may be administered to toddlers and children too young to cooperate in a conventional hearing test. The test is also useful in older children and adults and is an important measure in diagnosing auditory neuropathy described above.
Auditory brainstem response testing is an electrophysiological test used to test for hearing deficits caused by pathology within the ear, the cochlear nerve and also within the brainstem. This test can be used to identify delay in the conduction of neural impulses due to tumours or inflammation but can also be an objective test of hearing thresholds. Other electrophysiological tests, such as cortical evoked responses, can look at the hearing pathway up to the level of the auditory cortex.
Scans
MRI and CT scans can be useful to identify the pathology of many causes of hearing loss. They are only needed in selected cases.Classification
Hearing loss is categorized by type, severity, and configuration. Furthermore, a hearing loss may exist in only one ear or in both ears. Hearing loss can be temporary or permanent, sudden or progressive.Severity
The severity of a hearing loss is ranked according to ranges of nominal thresholds in which a sound must be so it can be detected by an individual. It is measured in decibels of hearing loss, or dB HL. The measurement of hearing loss in an individual is conducted over several frequencies, mostly 500 Hz, 1000 Hz, 2000 Hz and 4000 Hz. The hearing loss of the individual is the average of the hearing loss values over the different frequencies. Hearing loss can be ranked differently according to different organisations; and so, in different countries different systems are in use.Hearing loss may be ranked as slight, mild, moderate, moderately severe, severe or profound as defined below:
- Slight: between 16 and 25 dB HL
- Mild:
- * for adults: between 26 and 40 dB HL
- * for children: between 20 and 40 dB HL
- Moderate: between 41 and 54 dB HL
- Moderately severe: between 55 and 70 dB HL
- Severe: between 71 and 90 dB HL
- Profound: 91 dB HL or greater
- Totally deaf: Have no hearing at all. This is called anacusis.
- Normal or subnormal hearing: average tone loss is equal or below 20 dB HL
- Mild hearing loss: average tone loss between 21 and 40 dB HL
- Moderate hearing loss
- * First degree: average tone loss between 41 and 55 dB HL
- * Second degree: average tone loss between 56 and 70 dB HL
- Severe hearing loss
- * First degree: average tone loss between 71 and 80 dB HL
- * Second degree: average tone loss between 81 and 90 dB HL
- Very severe hearing loss
- * First degree: average tone loss between 91 and 100 dB HL
- * Second degree: average tone loss between 101 and 110 dB HL
- * Third degree: average tone loss between 111 and 119 dB HL
- Total hearing loss or Cophosis: average tone loss is equal or more than 120 dB HL
For certain legal purposes such as insurance claims, hearing loss is described in terms of percentages. Given that hearing loss can vary by frequency and that audiograms are plotted with a logarithmic scale, the idea of a percentage of hearing loss is somewhat arbitrary, but where decibels of loss are converted via a legally recognized formula, it is possible to calculate a standardized "percentage of hearing loss", which is suitable for legal purposes only.
Type
There are three main types of hearing loss, conductive hearing loss, sensorineural hearing loss. Combinations of conductive and sensorineural hearing losses are called a mixed hearing loss. An additional problem which is increasingly recognised is auditory processing disorder which is not a hearing loss as such but a difficulty perceiving sound.- Conductive hearing loss
Dysfunction of the three small bones of the middle ear – malleus, incus, and stapes – may cause conductive hearing loss. The mobility of the ossicles may be impaired for different reasons including a boney disorder of the ossicles called otosclerosis and disruption of the ossicular chain due to trauma, infection or ankylosis may also cause hearing loss.
- Sensorineural hearing loss
- Central deafness
- Mixed hearing loss
- Central auditory processing disorder
Configuration
The shape of an audiogram shows the relative configuration of the hearing loss, such as a Carhart notch for otosclerosis, 'noise' notch for noise-induced damage, high frequency rolloff for presbycusis, or a flat audiogram for conductive hearing loss. In conjunction with speech audiometry, it may indicate central auditory processing disorder, or the presence of a schwannoma or other tumor.There are four general configurations of hearing loss:
1. Flat: thresholds essentially equal across test frequencies.
2. Sloping: lower thresholds in low-frequency regions and higher thresholds in high-frequency regions.
3. Rising: higher thresholds in low-frequency regions and lower thresholds in higher-frequency regions.
4. Trough-shaped : greatest hearing loss in the mid-frequency range, with lower thresholds in low- and high-frequency regions.
Unilateral and bilateral
People with unilateral hearing loss or single-sided deafness have difficulty in:- hearing conversation on their impaired side
- localizing sound
- understanding speech in the presence of background noise.
One reason for the hearing problems these patients often experience is due to the head shadow effect. Newborn children with no hearing on one side but one normal ear could still have problems. Speech development could be delayed and difficulties to concentrate in school are common. More children with unilateral hearing loss have to repeat classes than their peers. Taking part in social activities could be a problem. Early aiding is therefore of utmost importance.
Prevention
It is estimated that half of cases of hearing loss are preventable. About 60% of hearing loss in children under the age of 15 can be avoided. A number of preventive strategies are effective including: immunization against rubella to prevent congenital rubella syndrome, immunization against H. influenza and S. pneumoniae to reduce cases of meningitis, and avoiding or protecting against excessive noise exposure. The World Health Organization also recommends immunization against measles, mumps, and meningitis, efforts to prevent premature birth, and avoidance of certain medication as prevention. World Hearing Day is a yearly event to promote actions to prevent hearing damage.Noise exposure is the most significant risk factor for noise-induced hearing loss that can be prevented. Different programs exist for specific populations such as school-age children, adolescents and workers. Education regarding noise exposure increases the use of hearing protectors. The use of antioxidants is being studied for the prevention of noise-induced hearing loss, particularly for scenarios in which noise exposure cannot be reduced, such as during military operations.
Workplace noise regulation
Noise is widely recognized as an occupational hazard. In the United States, the National Institute for Occupational Safety and Health and the Occupational Safety and Health Administration work together to provide standards and enforcement on workplace noise levels. The hierarchy of hazard controls demonstrates the different levels of controls to reduce or eliminate exposure to noise and prevent hearing loss, including engineering controls and personal protective equipment. Other programs and initiative have been created to prevent hearing loss in the workplace. For example, the Safe-in-Sound Award was created to recognize organizations that can demonstrate results of successful noise control and other interventions. Additionally, the Buy Quiet program was created to encourage employers to purchase quieter machinery and tools. By purchasing less noisy power tools like those found on the NIOSH Power Tools Database and limiting exposure to ototoxic chemicals, great strides can be made in preventing hearing loss.Companies can also provide personal hearing protector devices tailored to both the worker and type of employment. Some hearing protectors universally block out all noise, and some allow for certain noises to be heard. Workers are more likely to wear hearing protector devices when they are properly fitted.
Often interventions to prevent noise-induced hearing loss have many components. A 2017 Cochrane review found that stricter legislation might reduce noise levels. Providing workers with information on their noise exposure levels was not shown to decrease exposure to noise. Ear protection, if used correctly, can reduce noise to safer levels, but often, providing them is not sufficient to prevent hearing loss. Engineering noise out and other solutions such as proper maintenance of equipment can lead to noise reduction, but further field studies on resulting noise exposures following such interventions are needed. Other possible solutions include improved enforcement of existing legislation and better implementation of well-designed prevention programmes, which have not yet been proven conclusively to be effective. The conclusion of the Cochrane Review was that further research could modify what is now regarding the effectiveness of the evaluated interventions.
The Institute for Occupational Safety and Health of the German Social Accident Insurance has created a hearing impairment calculator based on the ISO 1999 model for studying threshold shift in relatively homogeneous groups of people, such as workers with the same type of job. The ISO 1999 model estimates how much hearing impairment in a group can be ascribed to age and noise exposure. The result is calculated via an algebraic equation that uses the A-weighted noise exposure level, how many years the people were exposed to this noise, how old the people are, and their sex. The model’s estimations are only useful for people without hearing loss due to non-job related exposure and can be used for prevention activities.
Screening
The United States Preventive Services Task Force recommends screening for all newborns.The American Academy of Pediatrics advises that children should have their hearing tested several times throughout their schooling:
- When they enter school
- At ages 6, 8, and 10
- At least once during middle school
- At least once during high school
Management
Management depends on the specific cause if known as well as the extent, type and configuration of the hearing loss. Sudden hearing loss due to and underlying nerve problem may be treated with corticosteroids.Most hearing loss, that resulting from age and noise, is progressive and irreversible, and there are currently no approved or recommended treatments. A few specific kinds of hearing loss are amenable to surgical treatment. In other cases, treatment is addressed to underlying pathologies, but any hearing loss incurred may be permanent. Some management options include hearing aids, cochlear implants, assistive technology, and closed captioning. This choice depends on the level of hearing loss, type of hearing loss, and personal preference. Hearing aid applications are one of the options for hearing loss management. For people with bilateral hearing loss, it is not clear if bilateral hearing aids are better than a unilateral hearing aid.
Epidemiology
Globally, hearing loss affects about 10% of the population to some degree. It caused moderate to severe disability in 124.2 million people as of 2004. Of these 65 million acquired the condition during childhood. At birth ~3 per 1000 in developed countries and more than 6 per 1000 in developing countries have hearing problems.Hearing loss increases with age. In those between 20 and 35 rates of hearing loss are 3% while in those 44 to 55 it is 11% and in those 65 to 85 it is 43%.
A 2017 report by the World Health Organization estimated the costs of unaddressed hearing loss and the cost-effectiveness of interventions, for the health-care sector, for the education sector and as broad societal costs. Globally, the annual cost of unaddressed hearing loss was estimated to be in the range of $750–790 billion international dollars.
The International Organization for Standardization developed the ISO 1999 standards for the estimation of hearing thresholds and noise-induced hearing impairment. They used data from two noise and hearing study databases, one presented by Burns and Robinson and by Passchier-Vermeer. As race are some of the factors that can affect the expected distribution of pure-tone hearing thresholds several other national or regional datasets exist, from Sweden, Norway, South Korea, the United States and Spain.
In the United States hearing is one of the health outcomes measure by the National Health and Nutrition Examination Survey, a survey research program conducted by the National Center for Health Statistics. It examines health and nutritional status of adults and children in the United States. Data from the United States in 2011-2012 found that rates of hearing loss has declined among adults aged 20 to 69 years, when compared with the results from an earlier time period. It also found that adult hearing loss is associated with increasing age, sex, race/ethnicity, educational level, and noise exposure. Nearly one in four adults had audiometric results suggesting noise-induced hearing loss. Almost one in four adults who reported excellent or good hearing had a similar pattern. Among people who reported exposure to loud noise at work, almost one third had such changes.
Social and cultural aspects
People with extreme hearing loss may communicate through sign languages. Sign languages convey meaning through manual communication and body language instead of acoustically conveyed sound patterns. This involves the simultaneous combination of hand shapes, orientation and movement of the hands, arms or body, and facial expressions to express a speaker's thoughts. "Sign languages are based on the idea that vision is the most useful tool a deaf person has to communicate and receive information".Deaf culture refers to a tight-knit cultural group of people whose primary language is signed, and who practice social and cultural norms which are distinct from those of the surrounding hearing community. This community does not automatically include all those who are clinically or legally deaf, nor does it exclude every hearing person. According to Baker and Padden, it includes any person or persons who "identifies him/herself as a member of the Deaf community, and other members accept that person as a part of the community," an example being children of deaf adults with normal hearing ability. It includes the set of social beliefs, behaviors, art, literary traditions, history, values, and shared institutions of communities that are influenced by deafness and which use sign languages as the main means of communication. Members of the Deaf community tend to view deafness as a difference in human experience rather than a disability or disease. When used as a cultural label especially within the culture, the word deaf is often written with a capital D and referred to as "big D Deaf" in speech and sign. When used as a label for the audiological condition, it is written with a lower case d.
Social impact of profound hearing loss
Family
The communication limitations between people who are deaf and their hearing family members can often cause difficulties in family relationships, and affect the strength of relationships among individual family members. It was found that most people who are deaf have hearing parents, which means that the channel that the child and parents communicate through can be very different, often affecting their relationship in a negative way. If a parent communicates best verbally, and their child communicates best using sign language, this could result in ineffective communication between parents and children. Ineffective communication can potentially lead to fights caused by misunderstanding, less willingness to talk about life events and issues, and an overall weaker relationship. Even if individuals in the family made an effort to learn deaf communication techniques such as sign language, a deaf family member often will feel excluded from casual banter; such as the exchange of daily events and news at the dinner table. It is often difficult for people who are deaf to follow these conversations due to the fast-paced and overlapping nature of these exchanges. This can cause a deaf individual to become frustrated and take part in less family conversations. This can potentially result in weaker relationships between the hearing individual and their immediate family members. This communication barrier can have a particularly negative effect on relationships with extended family members as well. Communication between a deaf individual and their extended family members can be very difficult due to the gap in verbal and non-verbal communication. This can cause the individuals to feel frustrated and unwilling to put effort into communicating effectively. The lack of effort put into communicating can result in anger, miscommunication, and unwillingness to build a strong relationship.Community
People who have hearing loss can often experience many difficulties as a result of communication barriers among them and other hearing individuals in the community. Some major areas that can be impacted by this are involvement in extracurricular activities and social relationships. For young people, extracurricular activities are vehicles for physical, emotional, social, and intellectual development. However, it is often the case that communication barriers between people who are deaf and their hearing peers and coaches/club advisors limit them from getting involved. These communication barriers make it difficult for someone with a hearing loss to understand directions, take advice, collaborate, and form bonding relationships with other team or club members. As a result, extracurricular activities such as sports teams, clubs, and volunteering are often not as enjoyable and beneficial for individuals who have hearing loss, and they may engage in them less often. A lack of community involvement through extracurricular activities may also limit the individual's social network. In general, it can be difficult for someone who is deaf to develop and maintain friendships with their hearing peers due to the communication gap that they experience. They can often miss the jokes, informal banter, and "messing around" that is associated with the formation of many friendships among young people. Conversations between people who are deaf and their hearing peers can often be limited and short due to their differences in communication methods and lack of knowledge on how to overcome these differences. Deaf individuals can often experience rejection by hearing peers who are not willing to make an effort to find their way around communication difficulties. Patience and motivation to overcome such communication barriers is required by both the deaf or hard of hearing and hearing individuals in order to establish and maintain good friendships.Many people tend to forget about the difficulties that deaf children encounter, as they view the deaf child differently from a deaf adult. Deaf children grow up being unable to fully communicate with their parents, siblings and other family members. Examples include being unable to tell their family what they have learned, what they did, asking for help, or even simply being unable to interact in daily conversation. Deaf children have to learn sign language and to read lips at a young age, however, they cannot communicate with others using it unless the others are educated in sign language as well. Children who are deaf or hard of hearing are faced with many complications while growing up, for example, some children have to wear hearing aids and others require assistance from sign language interpreters. The interpreters help them to communicate with other individuals until they develop the skills they need to efficiently communicate on their own. Although growing up for deaf children may entitle more difficulties than for other children, there are many support groups that allow deaf children to interact with other children. This is where they develop friendships. There are also classes for young children to learn sign language in an environment that has other children in their same situation and around their same age. These groups and classes can be very beneficial in providing the child with the proper knowledge and not to mention the societal interactions that they need in order to live a healthy, young, playful and carefree life that any child deserves.
There are three typical adjustment patterns adopted by adults with hearing loss. The first one is to remain withdrawn into your own self. This provides a sense of safety and familiarity which can be a comforting way to lead your life. The second is to act "as if" one does not even have hearing loss. A positive attitude will help people to live a life with no barriers and thus, engage in optimal interaction. The final and third pattern is for the person to accept their hearing loss as a part of them without undervaluing oneself. This means understanding that one is forced to live life with this disability, however, it is not the only thing that constitutes life's meaning. Furthermore, many feel as if their inability to hear others during conversation is their fault. It's important that these individuals learn how to become more assertive individuals who do not lack fear when it comes to asking someone to repeat something or to speak a little louder. Although there is much fatigue and frustration that is produced from one's inability to hear, it is important to learn from personal experiences in order to improve on one's communication skills. In essence, these patterns will help adults with hearing loss deal with the communication barriers that are present.
Workplace
In most instances, people who are deaf find themselves working with hearing colleagues, where they can often be cut off from the communication going on around them. Interpreters can be provided for meetings and workshops, however, are seldom provided for everyday work interactions. Communication of important information needed for jobs typically comes in the form of written or verbal summaries, which do not convey subtle meanings such as tone of voice, side conversations during group discussions, and body language. This can result in confusion and misunderstanding for the worker who is deaf, therefore making it harder to do their job effectively. Additionally, deaf workers can be unintentionally left out of professional networks, informal gatherings, and casual conversations among their collogues. Information about informal rules and organizational culture in the workplace is often communicated though these types of interactions, which puts the worker who is deaf at a professional and personal disadvantage. This could sever their job performance due to lack of access to information and therefore, reduce their opportunity to form relationships with their co-workers. Additionally, these communication barriers can all affect a deaf person's career development. Since being able to effectively communicate with one's co-workers and other people relevant to one's job is essential to managerial positions, people with hearing loss can often be denied such opportunities.To avoid these situations in the workplace, individuals can take full-time or part-time sign language courses. In this way, they can become better able to communicate with the deaf and hard of hearing. Such courses teach the American Sign Language language as most North Americans use this particular language to communicate. It is a visual language made up of specific gestures, hand shapes, and facial expressions that contain their own unique grammatical rules and sentence structures By completing sign language courses, it ensures that deaf individuals feel a part of the workplace and have the ability to communicate with their co-workers and employer in the manner as other hearing employees do.
Health care
Not only can communication barriers between deaf and hearing people affect family relationships, work, and school, but they can also have a very significant effect on a deaf individual's physical and mental health care. As a result of poor communication between the health care professional and the deaf or hard of hearing patient, many patients report that they are not properly informed about their disease and prognosis.This lack of or poor communication could also lead to other issues such as misdiagnosis, poor assessments, mistreatment, and even possibly harm to patients. Poor communication in this setting is often the result of health care providers having the misconception that all people who are deaf or hard of hearing have the same type of hearing loss, and require the same type of communication methods. In reality, there are many different types and range of hearing loss, and in order to communicate effectively a health care provider needs to understand that each individual with hearing loss has unique needs. This affects how individuals have been educated to communicate, as some communication methods work better depending on an individual's severity of hearing loss. For example, assuming every deaf or hard of hearing patient knows American Sign Language would be incorrect because there are different types of sign language, each varying in signs and meanings. A patient could have been educated to use cued speech which is entirely different from ASL. Therefore, in order to communicate effectively, a health care provider needs to understand that each individual has unique needs when communicating.
Although there are specific laws and rules to govern communication between health care professionals and people who are deaf, they are not always followed due to the health care professional's insufficient knowledge of communication techniques. This lack of knowledge can lead them to make assumptions about communicating with someone who is deaf, which can, in turn, cause them to use an unsuitable form of communication.
Acts in countries such as the Americans with Disabilities Act state that all health care providers are required to provide reasonable communication accommodations when caring for patients who are deaf. These accommodations could include qualified sign language interpreters, CDIs, and technology such as Internet interpretation services. A qualified sign language interpreter will enhance communication between a deaf individual and a health care professional by interpreting not only a health professional's verbal communication, but also their non-verbal such as expressions, perceptions, and body language. A Certified Deaf Interpreter is a sign language interpreter who is also a member of the Deaf community. They accompany a sign language interpreter and are useful for communication with deaf individuals who also have language or cognitive deficits. A CDI will transform what the health care professional communicates into basic, simple language. This method takes much longer, however it can also be more effective than other techniques. Internet interpretation services are convenient and less costly, but can potentially pose significant risks. They involve the use of a sign language interpreter over a video device rather than directly in the room. This can often be an inaccurate form of communication because the interpreter may not be licensed, is often unfamiliar with the patient and their signs, and can lack knowledge of medical terminology.
Aside from utilizing interpreters, healthcare professionals can improve their communication with deaf or hard of hearing patients by educating themselves on common misconceptions and proper practices depending on the patient's needs. For example, a common misconception is that exaggerating words and speaking loudly will help the patient understand more clearly. However, many individuals with hearing loss depend on lip-reading to identify words. Exaggerated pronunciation and a raised voice can distort the lips, making it even more difficult to understand. Another common mistake health care professionals make are the use of single words rather than full sentences. Although language should be kept simple and short, keeping context is important because certain homophonous words are difficult to distinguish by lip-reading. Health care professionals can further improve their own communication with their patients by eliminating any background noise and positioning themselves in a way where their face is clearly visible to the patient, and suitably lit. The healthcare professional should know how to use body language and facial expressions to properly communicate different feelings.
Research
Stem cell transplant and gene therapy
A 2005 study achieved successful regrowth of cochlea cells in guinea pigs. However, the regrowth of cochlear hair cells does not imply the restoration of hearing sensitivity, as the sensory cells may or may not make connections with neurons that carry the signals from hair cells to the brain. A 2008 study has shown that gene therapy targeting Atoh1 can cause hair cell growth and attract neuronal processes in embryonic mice. Some hope that a similar treatment will one day ameliorate hearing loss in humans.Recent research, reported in 2012 achieved growth of cochlear nerve cells resulting in hearing improvements in gerbils, using stem cells. Also reported in 2013 was regrowth of hair cells in deaf adult mice using a drug intervention resulting in hearing improvement. The Hearing Health Foundation in the US has embarked on a project called the Hearing Restoration Project. Also Action on Hearing Loss in the UK is also aiming to restore hearing.
Researchers reported in 2015 that genetically deaf mice which were treated with TMC1 gene therapy recovered some of their hearing. In 2017, additional studies were performed to treat Usher syndrome and here, a recombinant adeno-associated virus seemed to outperform the older vectors.