Ion channel
Ion channels are pore-forming membrane proteins that allow ions to pass through the channel pore. Their functions include establishing a resting membrane potential, shaping action potentials and other electrical signals by gating the flow of ions across the cell membrane, controlling the flow of ions across secretory and epithelial cells, and regulating cell volume. Ion channels are present in the membranes of all cells. Ion channels are one of the two classes of ionophoric proteins, the other being ion transporters.
The study of ion channels often involves biophysics, electrophysiology, and pharmacology, while using techniques including voltage clamp, patch clamp, immunohistochemistry, X-ray crystallography, fluoroscopy, and RT-PCR. Their classification as molecules is referred to as channelomics.
Basic features
There are two distinctive features of ion channels that differentiate them from other types of ion transporter proteins:- The rate of ion transport through the channel is very high.
- Ions pass through channels down their electrochemical gradient, which is a function of ion concentration and membrane potential, "downhill", without the input of metabolic energy.
Ion channels are integral membrane proteins, typically formed as assemblies of several individual proteins. Such "multi-subunit" assemblies usually involve a circular arrangement of identical or homologous proteins closely packed around a water-filled pore through the plane of the membrane or lipid bilayer. For most voltage-gated ion channels, the pore-forming subunit are called the α subunit, while the auxiliary subunits are denoted β, γ, and so on.
Biological role
Because channels underlie the nerve impulse and because "transmitter-activated" channels mediate conduction across the synapses, channels are especially prominent components of the nervous system. Indeed, [|numerous toxins] that organisms have evolved for shutting down the nervous systems of predators and prey work by modulating ion channel conductance and/or kinetics. In addition, ion channels are key components in a wide variety of biological processes that involve rapid changes in cells, such as cardiac, skeletal, and smooth muscle contraction, epithelial transport of nutrients and ions, T-cell activation and pancreatic beta-cell insulin release. In the search for new drugs, ion channels are a frequent target.Diversity
There are over 300 types of ion channels just in the cells of the inner ear. Ion channels may be classified by the nature of their gating, the species of ions passing through those gates, the number of gates and localization of proteins.Further heterogeneity of ion channels arises when channels with different constitutive subunits give rise to a specific kind of current. Absence or mutation of one or more of the contributing types of channel subunits can result in loss of function and, potentially, underlie neurologic diseases.
Classification by gating
Ion channels may be classified by gating, i.e. what opens and closes the channels. For example, voltage-gated ion channels open or close depending on the voltage gradient across the plasma membrane, while ligand-gated ion channels open or close depending on binding of ligands to the channel.Voltage-gated
Voltage-gated ion channels open and close in response to membrane potential.- Voltage-gated sodium channels: This family contains at least 9 members and is largely responsible for action potential creation and propagation. The pore-forming α subunits are very large and consist of four homologous repeat domains each comprising six transmembrane segments for a total of 24 transmembrane segments. The members of this family also coassemble with auxiliary β subunits, each spanning the membrane once. Both α and β subunits are extensively glycosylated.
- Voltage-gated calcium channels: This family contains 10 members, though these are known to coassemble with α2δ, β, and γ subunits. These channels play an important role in both linking muscle excitation with contraction as well as neuronal excitation with transmitter release. The α subunits have an overall structural resemblance to those of the sodium channels and are equally large.
- *Cation channels of sperm: This small family of channels, normally referred to as Catsper channels, is related to the two-pore channels and distantly related to TRP channels.
- Voltage-gated potassium channels : This family contains almost 40 members, which are further divided into 12 subfamilies. These channels are known mainly for their role in repolarizing the cell membrane following action potentials. The α subunits have six transmembrane segments, homologous to a single domain of the sodium channels. Correspondingly, they assemble as tetramers to produce a functioning channel.
- Some transient receptor potential channels: This group of channels, normally referred to simply as TRP channels, is named after their role in Drosophila phototransduction. This family, containing at least 28 members, is incredibly diverse in its method of activation. Some TRP channels seem to be constitutively open, while others are gated by voltage, intracellular Ca2+, pH, redox state, osmolarity, and mechanical stretch. These channels also vary according to the ion they pass, some being selective for Ca2+ while others are less selective, acting as cation channels. This family is subdivided into 6 subfamilies based on homology: classical, vanilloid receptors, melastatin, polycystins, mucolipins, and ankyrin transmembrane protein 1.
- Hyperpolarization-activated cyclic nucleotide-gated channels: The opening of these channels is due to hyperpolarization rather than the depolarization required for other cyclic nucleotide-gated channels. These channels are also sensitive to the cyclic nucleotides cAMP and cGMP, which alter the voltage sensitivity of the channel's opening. These channels are permeable to the monovalent cations K+ and Na+. There are 4 members of this family, all of which form tetramers of six-transmembrane α subunits. As these channels open under hyperpolarizing conditions, they function as pacemaking channels in the heart, particularly the SA node.
- Voltage-gated proton channels: Voltage-gated proton channels open with depolarization, but in a strongly pH-sensitive manner. The result is that these channels open only when the electrochemical gradient is outward, such that their opening will only allow protons to leave cells. Their function thus appears to be acid extrusion from cells. Another important function occurs in phagocytes during the "respiratory burst." When bacteria or other microbes are engulfed by phagocytes, the enzyme NADPH oxidase assembles in the membrane and begins to produce reactive oxygen species that help kill bacteria. NADPH oxidase is electrogenic, moving electrons across the membrane, and proton channels open to allow proton flux to balance the electron movement electrically.
Ligand-gated (neurotransmitter)
Ion channels activated by second messengers may also be categorized in this group, although ligands and second messengers are otherwise distinguished from each other.
Lipid-gated
This group of channels opens in response to specific lipid molecules binding to the channel's transmembrane domain typically near the inner leaflet of the plasma membrane. Phosphatidylinositol 4,5-bisphosphate and phosphatidic acid are the best-characterized lipids to gate these channels. Many of the leak potassium channels are gated by lipids including the inward-rectifier potassium channels and two pore domain potassium channels TREK-1 and TRAAK. KCNQ potassium channel family are gated by PIP2. The voltage activated potassium channel is regulated by PA. Its midpoint of activation shifts +50 mV upon PA hydrolysis, near resting membrane potentials. This suggests Kv could be opened by lipid hydrolysis independent of voltage and may qualify this channel as dual lipid and voltage gated channel.Other gating
Gating also includes activation and inactivation by second messengers from the inside of the cell membrane – rather than from outside the cell, as in the case for ligands.- Some potassium channels:
- *Inward-rectifier potassium channels: These channels allow potassium ions to flow into the cell in an "inwardly rectifying" manner: potassium flows more efficiently into than out of the cell. This family is composed of 15 official and 1 unofficial member and is further subdivided into 7 subfamilies based on homology. These channels are affected by intracellular ATP, PIP2, and G-protein βγ subunits. They are involved in important physiological processes such as pacemaker activity in the heart, insulin release, and potassium uptake in glial cells. They contain only two transmembrane segments, corresponding to the core pore-forming segments of the KV and KCa channels. Their α subunits form tetramers.
- *Calcium-activated potassium channels: This family of channels is activated by intracellular Ca2+ and contains 8 members.
- *Tandem pore domain potassium channel: This family of 15 members form what are known as leak channels, and they display Goldman-Hodgkin-Katz rectification. Contrary to their common name of 'Two-pore-domain potassium channels', these channels have only one pore but two pore domains per subunit.
- Two-pore channels include ligand-gated and voltage-gated cation channels, so-named because they contain two pore-forming subunits. As their name suggests, they have two pores.
- Light-gated channels like channelrhodopsin are directly opened by photons.
- Mechanosensitive ion channels open under the influence of stretch, pressure, shear, and displacement.
- Cyclic nucleotide-gated channels: This superfamily of channels contains two families: the cyclic nucleotide-gated channels and the hyperpolarization-activated, cyclic nucleotide-gated channels. This grouping is functional rather than evolutionary.
- *Cyclic nucleotide-gated channels: This family of channels is characterized by activation by either intracellular cAMP or cGMP. These channels are primarily permeable to monovalent cations such as K+ and Na+. They are also permeable to Ca2+, though it acts to close them. There are 6 members of this family, which is divided into 2 subfamilies.
- *Hyperpolarization-activated cyclic nucleotide-gated channels
- Temperature-gated channels: Members of the transient receptor potential ion channel superfamily, such as TRPV1 or TRPM8, are opened either by hot or cold temperatures.
Classification by type of ions
- Chloride channels: This superfamily of channels consists of approximately 13 members. They include ClCs, CLICs, Bestrophins and CFTRs. These channels are non-selective for small anions; however chloride is the most abundant anion, and hence they are known as chloride channels.
- Potassium channels
- *Voltage-gated potassium channels e.g., Kvs, Kirs etc.
- *Calcium-activated potassium channels e.g., BKCa or MaxiK, SK, etc.
- *Inward-rectifier potassium channels
- *Two-pore-domain potassium channels: This family of 15 members form what is known as leak channels, and they display Goldman-Hodgkin-Katz rectification.
- Sodium channels
- * Voltage-gated sodium channels
- * Epithelial sodium channels
- Calcium channels
- Proton channels
- *Voltage-gated proton channels
- Non-selective cation channels: These non-selectively allow many types of cations, mainly Na+, K+ and Ca2+, through the channel.
- *Most transient receptor potential channels
Classification by cellular localization
- Plasma membrane channels
- *Examples: Voltage-gated potassium channels, Sodium channels, Calcium channels and Chloride channels
- Intracellular channels, which are further classified into different organelles
- *Endoplasmic reticulum channels: RyR, SERCA, ORAi
- *Mitochondrial channels: mPTP, KATP, BK, IK, CLIC5, Kv7.4 at the inner membrane and VDAC and CLIC4 as outer membrane channels.
Other classifications
- Transient receptor potential channels: This group of channels, normally referred to simply as TRP channels, is named after their role in Drosophila visual phototransduction. This family, containing at least 28 members, is diverse in its mechanisms of activation. Some TRP channels remain constitutively open, while others are gated by voltage, intracellular Ca2+, pH, redox state, osmolarity, and mechanical stretch. These channels also vary according to the ion they pass, some being selective for Ca2+ while others are less selective cation channels. This family is subdivided into 6 subfamilies based on homology: canonical TRP, vanilloid receptors, melastatin, polycystins, mucolipins, and ankyrin transmembrane protein 1.
Detailed structure
Because of their small size and the difficulty of crystallizing integral membrane proteins for X-ray analysis, it is only very recently that scientists have been able to directly examine what channels "look like." Particularly in cases where the crystallography required removing channels from their membranes with detergent, many researchers regard images that have been obtained as tentative. An example is the long-awaited crystal structure of a voltage-gated potassium channel, which was reported in May 2003. One inevitable ambiguity about these structures relates to the strong evidence that channels change conformation as they operate, such that the structure in the crystal could represent any one of these operational states. Most of what researchers have deduced about channel operation so far they have established through electrophysiology, biochemistry, gene sequence comparison and mutagenesis.
Channels can have single to multiple transmembrane domains which span plasma membrane to form pores. Pore can determine the selectivity of the channel. Gate can be formed either inside or outside the pore region.
Pharmacology
Chemical substances can modulate the activity of ion channels, for example by blocking or activating them.Ion channel blockers
A variety of ion channel blockers can modulate ion channel activity and conductance.Some commonly used blockers include:
- Tetrodotoxin, used by puffer fish and some types of newts for defense. It blocks sodium channels.
- Saxitoxin is produced by a dinoflagellate also known as "red tide". It blocks voltage-dependent sodium channels.
- Conotoxin is used by cone snails to hunt prey.
- Lidocaine and Novocaine belong to a class of local anesthetics which block sodium ion channels.
- Dendrotoxin is produced by mamba snakes, and blocks potassium channels.
- Iberiotoxin is produced by the Buthus tamulus and blocks potassium channels.
- Heteropodatoxin is produced by Heteropoda venatoria and blocks potassium channels.
Ion channel activators
Diseases
There are a number of disorders which disrupt normal functioning of ion channels and have disastrous consequences for the organism. Genetic and autoimmune disorders of ion channels and their modifiers are known as channelopathies. See :Category:Channelopathies for a full list.- Shaker gene mutations cause a defect in the voltage gated ion channels, slowing down the repolarization of the cell.
- Equine hyperkalaemic periodic paralysis as well as human hyperkalaemic periodic paralysis are caused by a defect in voltage-dependent sodium channels.
- Paramyotonia congenita and potassium-aggravated myotonias
- Generalized epilepsy with febrile seizures plus
- Episodic ataxia, characterized by sporadic bouts of severe discoordination with or without myokymia, and can be provoked by stress, startle, or heavy exertion such as exercise.
- Familial hemiplegic migraine
- Spinocerebellar ataxia type 13
- Long QT syndrome is a ventricular arrhythmia syndrome caused by mutations in one or more of presently ten different genes, most of which are potassium channels and all of which affect cardiac repolarization.
- Brugada syndrome is another ventricular arrhythmia caused by voltage-gated sodium channel gene mutations.
- Polymicrogyria is a developmental brain malformation caused by voltage-gated sodium channel and NMDA receptor gene mutations.
- Cystic fibrosis is caused by mutations in the CFTR gene, which is a chloride channel.
- Mucolipidosis type IV is caused by mutations in the gene encoding the TRPML1 channel
- Mutations in and overexpression of ion channels are important events in cancer cells. In Glioblastoma multiforme, upregulation of gBK potassium channels and ClC-3 chloride channels enables glioblastoma cells to migrate within the brain, which may lead to the diffuse growth patterns of these tumors.
History
The Nobel Prize in Chemistry for 2003 was awarded to Roderick MacKinnon for his studies on the physico-chemical properties of ion channel structure and function, including x-ray crystallographic structure studies.