Landsat program


The Landsat program is the longest-running enterprise for acquisition of satellite imagery of Earth. It is a joint NASA/USGS program. On July 23, 1972 the Earth Resources Technology Satellite was launched. This was eventually renamed to Landsat. The most recent, Landsat 8, was launched on February 11, 2013. The instruments on the Landsat satellites have acquired millions of images. The images, archived in the United States and at Landsat receiving stations around the world, are a unique resource for global change research and applications in agriculture, cartography, geology, forestry, regional planning, surveillance and education, and can be viewed through the U.S. Geological Survey 'EarthExplorer' website. Landsat 7 data has eight spectral bands with spatial resolutions ranging from ; the temporal resolution is 16 days. Landsat images are usually divided into scenes for easy downloading. Each Landsat scene is about 115 miles long and 115 miles wide.

History

The Hughes Aircraft company's Santa Barbara Research Center initiated, designed, and fabricated the first three Multispectral Scanners in 1969. The first prototype MSS was completed within nine months, in the fall of 1970. It was tested by scanning Half Dome at Yosemite National Park.
Working at NASA's Goddard Space Flight Center, Valerie L. Thomas managed the development of early Landsat image processing software systems and became the resident expert on the Computer Compatible Tapes, or CCTs, that were used to store early Landsat imagery. Thomas was one of the image processing specialists who facilitated the ambitious Large Area Crop Inventory Experiment, known as LACIE—a project that showed for the first time that global crop monitoring could be done with Landsat satellite imagery.
The program was initially called the Earth Resources Technology Satellites Program, which was used from 1966 to 1975. In 1975, the name was changed to Landsat. In 1979, President of the United States Jimmy Carter's Presidential Directive 54 transferred Landsat operations from NASA to NOAA, recommended development of a long term operational system with four additional satellites beyond Landsat 3, and recommended transition to private sector operation of Landsat. This occurred in 1985 when the Earth Observation Satellite Company, a partnership of Hughes Aircraft and RCA, was selected by NOAA to operate the Landsat system with a ten-year contract. EOSAT operated Landsat 4 and Landsat 5, had exclusive rights to market Landsat data, and was to build Landsats 6 and 7.
taken on NASA's Landsat 7 satellite.
In 1989, this transition had not been fully completed when NOAA's funding for the Landsat program was due to run out and NOAA directed that Landsats 4 and 5 be shut down.
The head of the newly formed National Space Council, Vice President Dan Quayle, noted the situation and arranged emergency funding that allowed the program to continue with the data archives intact.
Again in 1990 and 1991, Congress provided only half of the year's funding to NOAA, requesting that agencies that used Landsat data provide the funding for the other six months of the upcoming year. In 1992, various efforts were made to procure funding for follow on Landsats and continued operations, but by the end of the year EOSAT ceased processing Landsat data. Landsat 6 was finally launched on October 5, 1993, but was lost in a launch failure. Processing of Landsat 4 and 5 data was resumed by EOSAT in 1994. NASA finally launched Landsat 7 on April 15, 1999.
The value of the Landsat program was recognized by Congress in October 1992 when it passed the Land Remote Sensing Policy Act authorizing the procurement of Landsat 7 and assuring the continued availability of Landsat digital data and images, at the lowest possible cost, to traditional and new users of the data.

Satellite chronology

;Timeline

ImageSize = width:800 height:auto barincrement:21
PlotArea = left:70 bottom:30 top:10 right:10
TimeAxis = orientation:horizontal format:yyyy
Colors =
id:canvas value:gray
id:grid1 value:gray
id:grid2 value:gray
BackgroundColors = canvas:canvas
DateFormat = mm/dd/yyyy
Period = from:01/01/1972 till:02/01/2020
AlignBars = justify
ScaleMajor = increment:2 start:1973 unit:year grid:grid1
ScaleMinor = increment:1 start:1974 unit:year
BarData =
bar:Landsat1 text:"Landsat 1"
bar:Landsat2 text:"Landsat 2"
bar:Landsat3 text:"Landsat 3"
bar:Landsat4 text:"Landsat 4"
bar:Landsat5 text:"Landsat 5"
bar:Landsat6 text:"Landsat 6"
bar:Landsat7 text:"Landsat 7"
bar:Landsat8 text:"Landsat 8"
PlotData =
align:left anchor:from fontsize:M width:13 shift: textcolor:black
bar:Landsat1 from:07/23/1972 till:01/06/1978 color:blue
bar:Landsat2 from:01/22/1975 till:02/25/1982 color:blue
bar:Landsat3 from:03/05/1978 till:03/31/1983 color:blue
bar:Landsat4 from:07/16/1982 till:12/14/1993 color:orange
bar:Landsat5 from:03/01/1984 till:06/05/2013 color:orange
bar:Landsat6 from:10/05/1993 till:10/05/1993 color:black
bar:Landsat7 from:04/15/1999 till:05/31/2003 color:red
bar:Landsat7 from:05/31/2003 till:end color:coral
bar:Landsat8 from:02/11/2013 till:end color:green

Spatial and spectral resolution

Landsat 1 through 5 carried the Landsat Multispectral Scanner. Landsat 4 and 5 carried both the MSS and Thematic Mapper instruments. Landsat 7 uses the Enhanced Thematic Mapper Plus scanner. Landsat 8 uses two instruments, the Operational Land Imager for optical bands and the Thermal Infrared Sensor for thermal bands. The band designations, bandpasses, and pixel sizes for the Landsat instruments are:
Landsat 1-3 MSSLandsat 4-5 MSSWavelength Resolution
Band 4 - GreenBand 1 - Green0.5 - 0.660*
Band 5 - RedBand 2 - Red0.6 - 0.760*
Band 6 - Near Infrared Band 3 - NIR0.7 - 0.860*
Band 7 - NIRBand 4 - NIR0.8 - 1.160*

* Original MSS pixel size was 79 x 57 meters; production systems now resample the data to 60 meters.
BandsWavelength Resolution
Band 1 - Blue0.45 - 0.5230
Band 2 - Green0.52 - 0.6030
Band 3 - Red0.63 - 0.6930
Band 4 - NIR0.76 - 0.9030
Band 5 - Shortwave Infrared 11.55 - 1.7530
Band 6 - Thermal10.40 - 12.50120*
Band 7 - SWIR 22.08 - 2.3530

* TM Band 6 was acquired at 120-meter resolution, but products are resampled to 30-meter pixels.
BandsWavelength Resolution
Band 1 - Blue0.45 - 0.5230
Band 2 - Green0.52 - 0.6030
Band 3 - Red0.63 - 0.6930
Band 4 - NIR0.77 - 0.9030
Band 5 - SWIR 11.55 - 1.7530
Band 6 - Thermal10.40 - 12.5060*
Band 7 - SWIR 22.09 - 2.3530
Band 8 - Panchromatic0.52 - 0.9015

* ETM+ Band 6 is acquired at 60-meter resolution, but products are resampled to 30-meter pixels.
BandsWavelength Resolution
Band 1 - Ultra Blue 0.435 - 0.45130
Band 2 - Blue0.452 - 0.51230
Band 3 - Green0.533 - 0.59030
Band 4 - Red0.636 - 0.67330
Band 5 - NIR0.851 - 0.87930
Band 6 - SWIR 11.566 - 1.65130
Band 7 - SWIR 22.107 - 2.29430
Band 8 - Panchromatic0.503 - 0.67615
Band 9 - Cirrus1.363 - 1.38430
Band 10 - Thermal 110.60 - 11.19100*
Band 11 - Thermal 211.50 - 12.51100*

* TIRS bands are acquired at 100 meter resolution, but are resampled to 30 meter in delivered data product.
The spectral band placement for each sensor is visually displayed .

Details of sensor design

The Multispectral Scanner onboard Landsat missions 1 through 5 had a 230 mm fused silica dinner-plate mirror epoxy bonded to three invar tangent bars mounted to base of a Ni/Au brazed Invar frame in a Serrurier truss that was arranged with four "Hobbs-Links", crossing at mid-truss. This construct ensured the secondary mirror would simply oscillate about the primary optic axis to maintain focus despite vibration inherent from the 360 mm beryllium scan mirror. This engineering solution allowed the United States to develop LANDSAT at least five years ahead of the French SPOT, which first used CCD arrays to stare without need for a scanner. However, LANDSAT data prices climbed from $250 per computer compatible data tape and $10 for black-and-white print to $4,400 for data tape and $2,700 for black-and-white print by 1984, making SPOT data a much more affordable option for satellite imaging data. This was a direct result of the commercialization efforts begun under the Carter administration, though finally completed under the Reagan administration.
The MSS FPA, or Focal Plane Array consisted of 24 square optical fibers extruded down to 0.005 mm square fiber tips in a 4x6 array to be scanned across the Nimbus spacecraft path in a ±6 degree scan as the satellite was in a 1.5 hour polar orbit, hence it was launched from Vandenberg Air Force Base. The fiber optic bundle was embedded in a fiber optic plate to be terminated at a relay optic device that transmitted fiber end signal on into six photodiodes and 18 photomultiplier tubes that were arrayed across a 7.6 mm thick aluminum tool plate, with sensor weight balanced vs the 230 mm telescope on opposite side. This main plate was assembled on a frame, then attached to the silver-loaded magnesium housing with helicoil fasteners.
Key to the success of the multi spectral scanner was the scan monitor mounted on the underbelly of the magnesium housing. It consisted of a diode light source and a sensor mounted at the ends of four flat mirrors that were tilted so that it took 14 bounces for a beam to reflect the length of the three mirrors from source to sender. The beam struck the beryllium scan mirror eight times as it reflected eight times off the flat mirrors. The beam only sensed three positions, being both ends of scan and the mid scan, but by interpolating between these positions that was all that was required to determine where the multi spectral scanner was pointed. Using the scan monitor information the scanning data could be calibrated to display correctly on a map.

Uses of Landsat imagery

One of the great advantages of remote sensing is that it provides data at a broader and more global level that is otherwise impossible to gather when using conventional equipment. However, there is a tradeoff between the local detail of the measurements and the scale of the area being measured compared to using other remote sensing methods such as aerial imagery.
Remote sensing provides information about geographic spaces, like ecosystems that allows scientists to predict the distribution of species, as well as detecting both natural occurring and anthropogenic generated changes in a greater scale than traditional data provided by field work. It also presents data more accurately than models that are derived from field work. The different bands in Landsat, with diverse spectral range provide highly differentiated applications. There are big and diverse applications of Landsat imagery and satellite date in general, ranging from ecology to geopolitical matters. Land cover determination has become a very common use of Landsat Imagery and remotely sensing generated images all around the world.

Natural resources management

Agroindustry

In 1975, one potential application for the new satellite-generated imagery was to find high yield fishery areas. Through the Landsat Menhaden and Thread Investigation, some satellite data of the eastern portion of the Mississippi sound and another area off the coast of the Louisiana coast data was run through classification algorithms to rate the areas as high and low probability fishing zones, these algorithms yielded a classification that was proven with in-situ measurements – to be over 80% accurate and found that water color, as seen from space, and turbidity significantly correlate with the distribution of menhaden – while surface temperature and salinity do not appear to be significant factors. Water color – measured with the multispectral scanners four spectral bands, was used to infer chlorophylls, turbidity, and possibly fish distribution.

Forestry

An ecological study used 16 ortho-rectified Landsat images to generate a land cover map of Mozambique's mangrove forest. The main objective was to measure the mangrove cover and above ground biomass on this zone that until now could only be estimated, the cover was found with 93% accuracy to be 2909 square kilometers. Additionally, the study helped confirm that geological setting has a greater influence on biomass distribution than latitude alone-the mangrove area is spread across 16 degrees of latitude but it the biomass volume of it was affected more strongly by geographic conditions.

Climate change and environmental disasters

The shrinking of the Aral Sea

The shrinking of the Aral Sea has been described as "One of the planet's worst environmental disasters". Landsat Imagery has been used as a record to quantify the amount of water loss and the changes to the shoreline. Satellite visual images have a greater impact on people than just words, and this shows the importance of Landsat imagery and satellite images in general.

Yellowstone Park historic fires

The Yellowstone fires of 1988 were the worst in the recorded history of the national park. They lasted from June 14 to September 11, when rain and snow helped halt the spread of the fires. The area affected by the fire was estimated to be 3,213 square kilometers – 36% of the park. Landsat imagery was used for the area estimation, and it also helped determine the reasons why the fire spread so quickly.
Historic drought and a significant number of lightning strikes were some of the factors that created conditions for the massive fire, but anthropogenic actions amplified the disaster. On images generated previous to the fire, there is an evident difference between lands that display preservation practices and the lands that display clear cut activities for timber production. These two type of lands reacted differently to the stress of fires, and it is believed that that was an important factor on the behavior of the wildfire. Landsat Imagery, and satellite imagery in general, have contributed to understanding fire science; fire danger, wildfire behavior and the effects of wildfire on certain areas. It has helped understanding of how different features and vegetation fuel fires, change temperature, and affect the spreading speed.

Glacier retreat

The serial nature of Landsat missions and the fact that is the longest-running satellite program gives it a unique perspective to generate information of earth. Glacier retreat in a big scale can be traced back to previous Landsat missions, and this information can be used to generate climate change knowledge. The Columbia glacier retreat for example, can be observed in false-composite images since Landsat 4 in 1986.
Landsat imagery gives a time-lapse like series of images of development. Human development specifically, can be measured by the size a city grows over time. Further than just population estimates and energy consumption, Landsat imagery gives an insight of the type of urban development, and study aspects of social and political change through visible change. In Beijing for example, a series of ring roads started to develop in 1980s following the economic reform of 1970, and the change in development rate and construction rate was accelerated on these time periods.

Discovery of new species

In 2005, Landsat imagery assisted in the discovery of new species. Conservation scientist Julian Bayliss wanted to find areas that could potentially become conservation forests using Landsat generated satellite images. Bayliss saw a patch in Mozambique that until then had no detailed information. On a reconnaissance trip, he found great diversity of wildlife as well as three new species of butterflies and a new snake species. Following his discovery, he continued to study this forest and was able to map and determine the forest extent.

Future

, launched 11 February 2013, is the most recent satellite in the Landsat series. It was launched on an Atlas V 401 from Vandenberg Air Force Base by the Launch Services Program. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The new satellite was assembled in Arizona by Orbital Sciences Corporation.
Preliminary planning has begun for Landsat 9, though its future remains uncertain. Over the course of FY2014 financial planning "appropriators chided NASA for unrealistic expectations that a Landsat 9 would cost $1 billion, and capped spending at $650 million" according to a report by the Congressional Research Service. Senate appropriators have advised NASA to plan for a launch no later than 2020. In April 2015, NASA and the USGS announced that work on Landsat 9 had commenced, with funding allocated for the satellite in the president's FY2016 budget, for a planned launch in 2023. Funding for the development of a low-cost thermal infrared free-flying satellite for launch in 2019 was also proposed, to ensure data continuity by flying in formation with Landsat 8.