In 1943, he was sent to the Manhattan Project at Los Alamos, New Mexico, working under Robert Oppenheimer to develop the atomic bomb. At Los Alamos, Skaggs was charged with the task of adapting the anti-aircraft detection system into a failsafe "fuse" for the first bomb that would be used against Japan. From a distance of 20 miles, Skaggs witnessed the first test at Alamogordo, New Mexico. Skaggs immediately understood that the current plans left an unacceptable amount of time for the bombardiers to safely escape from the drop zone. He developed a system with two back-up systems that allowed additional time to for the plane and crew to make a secure exit from the skies over Japan.
Michael Reese Hospital
When World War II ended Skaggs returned home to Chicago and went back to work on the medical applications of radiation. He resumed his work at Michael Reese Hospital and went on assignment to the Physics Department at the University of Illinois to team with Donald Kerst for a physics research project. This began what was to become a classic case of collaborative work between two individuals. The goal was to utilize a Betatron to extract an electron beam for medical use. The betatron was invented by Kerst for physics experiments. As serendipity often plays a role in medical and scientific developments, sometimes accompanied by a dose of irony, chance presented a member of the team, who was a promising physics graduate student. The student was diagnosed with a brain tumor, glioblastoma multiformae and no current treatment options available for the tumor. The first clinical use of the high energy Betatron radiation for medical therapy proved beneficial to effectively reduce the mass of the tumor, yet not sufficient to eliminate the tumor and provide a cure.
University of Chicago
In 1948, Skaggs accepted a faculty appointment as assistant professor of radiology at the University of Chicago. In 1949, he took the promotion to associate professor with the responsibility for the development of radiation therapy equipment and facilities at Argonne Cancer Research Hospital. The Atomic Energy Commission program, titled "Atoms for Peace" funded the facilities at ACRH. In 1953, the ACRH was among the initial list of hospitals dedicated to radiation therapy for cancer treatment. At ACRH, the next project for the Skaggs and Lanzl team was the design of a cobalt treatment unit, that was built for the most part, in the machine shops of ACRH and the University of Illinois. The duo of Skaggs and Lanzl began in the 1950s another project. This time the goal was to develop and establish a graduate program in medical physics, perhaps the first in the United States. In the 1960s, a doctorate program was launched that would award a Ph.D. degree in medical physics. In 1956, Skaggs, received a promotion to full professor. He designed and built an analog computer to calculate the radiation dose to tissue to be utilized in treatment plans for radiation therapy. The ‘computer’ was finally running by 1963 and the components occupied a small room. In the 1970s, Franca T. Kuchnir and Skaggs developed a method to produce neutrons for radiation therapy, maybe the first fast-neutron therapy facility in the United States.