Macular degeneration


Macular degeneration, also known as age-related macular degeneration, is a medical condition which may result in blurred or no vision in the center of the visual field. Early on there are often no symptoms. Over time, however, some people experience a gradual worsening of vision that may affect one or both eyes. While it does not result in complete blindness, loss of central vision can make it hard to recognize faces, drive, read, or perform other activities of daily life. Visual hallucinations may also occur but these do not represent a mental illness.
Macular degeneration typically occurs in older people. Genetic factors and smoking also play a role. It is due to damage to the macula of the retina. Diagnosis is by a complete eye exam. The severity is divided into early, intermediate, and late types. The late type is additionally divided into "dry" and "wet" forms with the dry form making up 90% of cases.
Preventive efforts include exercising, eating well, and not smoking. There is no cure or treatment that returns vision already lost. In the wet form, anti-VEGF medication injected into the eye or less commonly laser coagulation or photodynamic therapy may slow worsening. Antioxidant vitamins and minerals do not appear to be useful for prevention. However, dietary supplements may slow the progression in those who already have the disease.
In 2015 it affected 6.2 million people globally. In 2013 it was the fourth most common cause of blindness after cataracts, preterm birth, and glaucoma. It most commonly occurs in people over the age of fifty and in the United States is the most common cause of vision loss in this age group. About 0.4% of people between 50 and 60 have the disease, while it occurs in 0.7% of people 60 to 70, 2.3% of those 70 to 80, and nearly 12% of people over 80 years old.

Signs and symptoms

Signs and symptoms of macular degeneration include:
;Visual symptoms
Macular degeneration by itself will not lead to total blindness. For that matter, only a small number of people with visual impairment are totally blind. In almost all cases, some vision remains, mainly peripheral. Other complicating conditions may lead to such an acute condition, but few macular degeneration patients experience total visual loss.
The area of the macula comprises only about 2.1% of the retina, and the remaining 97.9% remains unaffected by the disease. Even though the macula provides such a small fraction of the visual field, almost half of the visual cortex is devoted to processing macular information.
The loss of central vision profoundly affects visual functioning. It is quite difficult, for example, to read without central vision. Pictures that attempt to depict the central visual loss of macular degeneration with a black spot do not do justice to the devastating nature of the visual loss. This can be demonstrated by printing letters six inches high on a piece of paper and attempting to identify them while looking straight ahead and holding the paper slightly to the side. Most people find this difficult to do.
In addition, people with dry macular degeneration often do not experience any symptoms but can experience gradual onset of blurry vision in one or both eyes. People with wet macular degeneration may experience acute onset of visual symptoms.

Risk factors

Recurrence ratios for siblings of an affected individual are three- to sixfold higher than in the general population. Genetic linkage analysis has identified 5 sets of gene variants at three locations on different chromosomes as explaining at least 50% of the risk. These genes have roles regulating the immune response, inflammatory processes and homeostasis of the retina. Variants of these genes give rise to different kinds of dysfunction in these processes. Over time, this results in accumulation of intracellular and extracellular metabolic debris. This can cause scarring of the retina or breakdown of its vascularization.
Genetic tests are available for some of these gene variations. However, pathogenesis of macular degeneration is a complex interaction between genetics, environment and lifestyle, and presence of unfavorable genetic factors doesn't necessarily predict progression to disease. The three loci where identified gene variants are found are designated:
such as that in the MT-ND2 molecule, predicts wet AMD.

Pathophysiology

The pathogenesis of age-related macular degeneration is not well known, although some theories have been put forward, including oxidative stress, mitochondrial dysfunction, and inflammatory processes.
The imbalance between the production of damaged cellular components and degradation leads to the accumulation of harmful products, for example, intracellular lipofuscin and extracellular drusen. Incipient atrophy is demarcated by areas of retinal pigment epithelium thinning or depigmentation that precede geographic atrophy in the early stages of AMD. In advanced stages of AMD, atrophy of the RPE and/or development of new blood vessels result in the death of photoreceptors and central vision loss.
In the dry form, cellular debris called drusen accumulates between the retina and the choroid, causing atrophy and scarring to the retina. In the wet form, which is more severe, blood vessels grow up from the choroid behind the retina which can leak exudate and fluid and also cause hemorrhaging.
Early work demonstrated a family of immune mediators was plentiful in drusen. Complement factor H is an important inhibitor of this inflammatory cascade, and a disease-associated polymorphism in the CFH gene strongly associates with AMD. Thus an AMD pathophysiological model of chronic low grade complement activation and inflammation in the macula has been advanced. Lending credibility to this has been the discovery of disease-associated genetic polymorphisms in other elements of the complement cascade including complement component 3.
A powerful predictor of AMD is found on chromosome 10q26 at LOC 387715. An insertion/deletion polymorphism at this site reduces expression of the ARMS2 gene though destabilization of its mRNA through deletion of the polyadenylation signal. ARMS2 protein may localize to the mitochondria and participate in energy metabolism, though much remains to be discovered about its function.
Other gene markers of progression risk includes tissue inhibitor of metalloproteinase 3, suggesting a role for extracellular matrix metabolism in AMD progression. Variations in cholesterol metabolising genes such as the hepatic lipase, cholesterol ester transferase, lipoprotein lipase and the ATP-binding cassette A1 correlate with disease progression. The early stigmata of disease, drusen, are rich in cholesterol, offering face validity to the results of genome-wide association studies.

Stages

In AMD there is a progressive accumulation of characteristic yellow deposits, called drusen, in the macula, between the retinal pigment epithelium and the underlying choroid. This accumulation is believed to damage the retina over time. Amyloid beta, which builds up in Alzheimer's disease brains, is one of the proteins that accumulate in AMD, which is a reason why AMD is sometimes called "Alzheimer's of the eye" or "Alzheimer's of the retina".
AMD can be divided into 3 stages: early, intermediate, and late, based partially on the extent of drusen.
AMD-like pathology begins with small yellow deposits in the macula, between the retinal pigment epithelium and the underlying choroid. Most people with these early changes still have good vision. People with drusen may or may not develop AMD. In fact, the majority of people over age 60 have drusen with no adverse effects. The risk of developing symptoms is higher when the drusen are large and numerous, and associated with the disturbance in the pigmented cell layer under the macula. Large and soft drusen are thought to be related to elevated cholesterol deposits.

Early AMD

Early AMD is diagnosed based on the presence of medium-sized drusen, about the width of an average human hair. Early AMD is usually asymptomatic.

Intermediate AMD

Intermediate AMD is diagnosed by large drusen and/or any retinal pigment abnormalities. Intermediate AMD may cause some vision loss, but, like early AMD, it is usually asymptomatic.

Late AMD

In late AMD, enough retinal damage occurs that, in addition to drusen, people will also begin to experience symptomatic central vision loss. The damage can either be the development of atrophy or the onset of neovascular disease. Late AMD is further divided into two subtypes based on the types of damage: Geographic atrophy and Wet AMD.
Dry AMD
Dry AMD is a broad designation, encompassing all forms of AMD that are not neovascular. This includes early and intermediate forms of AMD, as well as the advanced form of dry AMD known as geographic atrophy. Dry AMD patients tend to have minimal symptoms in the earlier stages; visual function loss occurs more often if the condition advances to geographic atrophy. Dry AMD accounts for 80–90% of cases and tends to progress slowly. In 10–20% of people, dry AMD progresses to the wet type.

Geographic atrophy

is an advanced form of AMD in which progressive and irreversible loss of retinal cells leads to a loss of visual function. There are multiple layers that make up the retina, and in geographic atrophy, there are three specific layers that undergo atrophy: the choriocapillaris, retinal pigment epithelium, and the overlying photoreceptors.
The three layers that undergo atrophy in geographic atrophy are all adjacent to each other. The photoreceptors are the most superficial and they are the cells that are responsible for converting energy from the light from the outside world, into an electrical signal to be sent to the brain. There are several functions of the retinal pigment epithelium. One of the main functions of the retinal pigment epithelium is to minimize oxidative stress. It does so by absorbing light, and thus preventing it from getting to the underlying layers. The layers underlying the retinal pigment epithelium are very vascularlized so they have very high oxygen tension. Thus, if light was to get to those layers, many free radicals would form and cause damage to nearby tissues. The deepest layer that undergoes atrophy in geographic atrophy is called the choriocappilaris. It is a capillary network that provides nutrients to the retinal pigment epithelium.
The pathophysiology of geographic atrophy is still uncertain. Some studies questioned whether it was due to a deficient retinal pigment epithelium, leading to increased oxidative stress. Other studies have looked for inflammatory causes of damage. Thus far, the medical community is still not certain. Recent studies have begun to look at each layer individually. They found that decrease blood flow in the choriocapillaris precedes atrophy of the retinal pigment epithelium and the overlying photoreceptors. Since the choriocapillaris is a vascular layer, this maybe be used as an arugment for why geographic atrophy could be a disease due to decreased blood flow.
Wet AMD
or exudative AMD, the "wet" form of advanced AMD, causes vision loss due to abnormal blood vessel growth in the choriocapillaris, through Bruch's membrane. It is usually, but not always, preceded by the dry form of AMD. The proliferation of abnormal blood vessels in the retina is stimulated by vascular endothelial growth factor. Because these blood vessels are abnormal, these are also more fragile than typical blood vessels, which ultimately leads to blood and protein leakage below the macula. Bleeding, leaking, and scarring from these blood vessels eventually cause irreversible damage to the photoreceptors and rapid vision loss if left untreated.

Oxidative stress

Age-related accumulation of low-molecular-weight, phototoxic, pro-oxidant melanin oligomers within lysosomes in the retinal pigment epithelium may be partly responsible for decreasing the digestive rate of photoreceptor outer rod segments by the RPE – autophagy. A decrease in the digestive rate of POS has been shown to be associated with lipofuscin formation – a classic sign associated with AMD.
The role of retinal oxidative stress in the cause of AMD by resulting in further inflammation of the macula is suggested by the enhanced rate of disease in smokers and those exposed to UV irradiation.
Mitochondrial dysfunction may play a role.

Diagnosis

Diagnosis of age-related macular degeneration depends on signs in the macula, not necessarily vision. Wet AMD is typically the advanced progression of dry AMD and will require additional diagnostic tools. Additionally, early diagnosis of wet AMD can prevent further visual deterioration and potentially improve vision.
Diagnosis of dry AMD may include the following clinical examinations as well as procedures and tests:
Diagnosis of wet AMD may include the following in addition to the above tests:
A 2017 Cochrane review found the use of vitamin and mineral supplements, alone or in combination, by the general population did not affect whether or not AMD started.

Management

Treatment of AMD varies depending on the category of the disease at the time of diagnosis. In general, treatment is aimed at slowing down the progression of AMD. As of 2018, there are no treatments to reverse the effects of AMD. Early-stage and intermediate-stage AMD is managed by modifying known risk factors such as smoking and atherosclerosis and making dietary modifications. For intermediate-stage AMD, management also includes antioxidant and mineral supplementation. Advanced-stage AMD is managed based on the presence of choroidal neovascularization : dry AMD or wet AMD. No effective treatments exist for dry AMD. The CNV present in wet AMD is managed with vascular endothelial growth factor inhibitors.

Dry AMD

No medical or surgical treatment is available for this condition.

Wet AMD

, aflibercept, and brolucizumab are approved VEGF inhibitors for the treatment of CNV in wet AMD. All three drugs are administered via intravitreal injection, meaning they are injected directly into the eye. Bevacizumab is another VEGF inhibitor that has been shown to have similar efficacy and safety as the previous two drugs, however, is not currently indicated for AMD. AMD can also be treated with laser coagulation therapy.
A randomized control trial found that bevacizumab and ranibizumab had similar efficacy, and reported no significant increase in adverse events with bevacizumab. A 2014 Cochrane review found that the systemic safety of bevacizumab and ranibizumab are similar when used to treat neovascular AMD, except for gastrointestinal disorders. Bevacizumab however is not FDA approved for treatment of macular degeneration. A controversy in the UK involved the off-label use of cheaper bevacizumab over the approved, but expensive, ranibizumab. Ranibizumab is a smaller fragment, Fab fragment, of the parent bevacizumab molecule specifically designed for eye injections. Other approved antiangiogenic drugs for the treatment of neo-vascular AMD include pegaptanib and aflibercept.
The American Academy of Ophthalmology practice guidelines do not recommend laser coagulation therapy for macular degeneration, but state that it may be useful in people with new blood vessels in the choroid outside of the fovea who don't respond to drug treatment. There is strong evidence that laser coagulation will result in the disappearance of drusen but does not affect choroidal neovascularisation. A 2007 Cochrane review on found that laser photocoagulation of new blood vessels in the choroid outside of the fovea is effective and economical method, but that the benefits are limited for vessels next to or below the fovea.
Photodynamic therapy has also been used to treat wet AMD. The drug verteporfin is administered intravenously; light of a certain wavelength is then applied to the abnormal blood vessels. This activates the verteporfin destroying the vessels.
Cataract surgery could improve visual outcomes for people with AMD, though there have been concerns about surgery increasing the progression of AMD. A randomized controlled trial found that people who underwent immediate cataract surgery had improved visual acuity and better quality of life outcomes than those who underwent delayed cataract surgery.

Adaptive devices

Because peripheral vision is not affected, people with macular degeneration can learn to use their remaining vision to partially compensate. Assistance and resources are available in many countries and every state in the U.S. Classes for "independent living" are given and some technology can be obtained from a state department of rehabilitation.
Adaptive devices can help people read. These include magnifying glasses, special eyeglass lenses, computer screen readers, and TV systems that enlarge reading the material.
Computer screen readers such as JAWS or Thunder work with standard Windows computers.
Also, Apple devices provide a wide range of features.
Video cameras can be fed into standard or special-purpose computer monitors, and the image can be zoomed in and magnified. These systems often include a movable table to move the written material.
Accessible publishing provides larger fonts for printed books, patterns to make tracking easier, audiobooks and DAISY books with both text and audio.

Epidemiology

The prevalence any age-related macular degeneration is higher in Europeans than in Asians and Africans. There is no difference in prevalence between Asians and Africans. The incidence of age-related macular degeneration and its associated features increases with age and is low in people <55 years of age. Smoking is the strongest modifiable risk factor. Age-related macular degeneration accounts for more than 54% of all vision loss in the white population in the USA. An estimated 8 million Americans are affected with early age-related macular degeneration, of whom over 1 million will develop advanced age-related macular degeneration within the next 5 years. In the UK, age-related macular degeneration is the cause of blindness in almost 42% of those who go blind aged 65–74 years, almost two-thirds of those aged 75–84 years, and almost three-quarters of those aged 85 years or older.

Research directions

Association with other age-related diseases

Studies indicate drusen associated with AMD are similar in molecular composition to Beta-Amyloid plaques and deposits in other age-related diseases such as Alzheimer's disease and atherosclerosis. This suggests that similar pathways may be involved in the etiologies of AMD and other age-related diseases.

Genetic testing

A practical application of AMD-associated genetic markers is in the prediction of progression of AMD from early stages of the disease to neovascularization.

Stem cell transplant

Cell based therapies using bone marrow stem cells as well as retinal pigment epithelial transplantation are being studied. A number of trials have occurred in humans with encouraging results.

Other types

There are a few other kinds of macular degeneration with similar symptoms but unrelated in etiology to Wet or Dry age-related macular degeneration. They are all genetic disorders that may occur in childhood or middle age.
Similar symptoms with a very different etiology and different treatment can be caused by epiretinal membrane or macular pucker or any other condition affecting the macula, such as central serous retinopathy.

Notable cases