Multiply perfect number


In mathematics, a multiply perfect number is a generalization of a perfect number.
For a given natural number k, a number n is called k-perfect if and only if the sum of all positive divisors of n is equal to kn; a number is thus perfect if and only if it is 2-perfect. A number that is k-perfect for a certain k is called a multiply perfect number. As of 2014, k-perfect numbers are known for each value of k up to 11.
It can be proven that:
An open question is whether all k-perfect numbers are divisible by k!, where "!" is the factorial.

Example

The divisors of 120 are 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, and 120. Their sum is 360, which equals
, so 120 is 3-perfect.

Smallest ''k''-perfect numbers

The following table gives an overview of the smallest k-perfect numbers for k ≤ 11 :
kSmallest k-perfect numberFactorsFound by
11ancient
262 × 3ancient
312023 × 3 × 5ancient
43024025 × 33 × 5 × 7René Descartes, circa 1638
51418243904027 × 34 × 5 × 7 × 112 × 17 × 19René Descartes, circa 1638
6154345556085770649600 215 × 35 × 52 × 72 × 11 × 13 × 17 × 19 × 31 × 43 × 257Robert Daniel Carmichael, 1907
7141310897947438348259849402738485523264343544818565120000 232 × 311 × 54 × 75 × 112 × 132 × 17 × 193 × 23 × 31 × 37 × 43 × 61 × 71 × 73 × 89 × 181 × 2141 × 599479TE Mason, 1911
8826809968707776137289924194863596289350194388329245554884393242141388447
6391773708366277840568053624227289196057256213348352000000000
262 × 315 × 59 × 77 × 113 × 133 × 172 × 19 × 23 × 29 × 312 × 37 × 41 × 43 × 53 × 612 × 712 × 73 × 83 × 89 × 972 × 127 × 193 × 283 × 307 × 317 × 331 × 337 × 487 × 5212 × 601 × 1201 × 1279 × 2557 × 3169 × 5113 × 92737 × 649657Stephen F. Gretton, 1990
9561308081837371589999987...415685343739904000000000 2104 × 343 × 59 × 712 × 116 × 134 × 17 × 194 × 232 × 29 × 314 × 373 × 412 × 432 × 472 × 53 × 59 × 61 × 67 × 713 × 73 × 792 × 83 × 89 × 97 × 1032 × 107 × 127 × 1312 × 1372 × 1512 × 191 × 211 × 241 × 331 × 337 × 431 × 521 × 547 × 631 × 661 × 683 × 709 × 911 × 1093 × 1301 × 1723 × 2521 × 3067 × 3571 × 3851 × 5501 × 6829 × 6911 × 8647 × 17293 × 17351 × 29191 × 30941 × 45319 × 106681 × 110563 × 122921 × 152041 × 570461 × 16148168401Fred Helenius, 1995
10448565429898310924320164...000000000000000000000000 2175 × 369 × 529 × 718 × 1119 × 138 × 179 × 197 × 239 × 293 × 318 × 372 × 414 × 434 × 474 × 533 × 59 × 615 × 674 × 714 × 732 × 79 × 83 × 89 × 97 × 1013 × 1032 × 1072 × 109 × 113 × 1272 × 1312 × 139 × 149 × 151 × 163 × 179 × 1812 × 191 × 197 × 199 × 2113 × 223 × 239 × 257 × 271 × 281 × 307 × 331 × 337 × 3532 × 367 × 373 × 397 × 419 × 421 × 521 × 523 × 5472 × 613 × 683 × 761 × 827 × 971 × 991 × 1093 × 1741 × 1801 × 2113 × 2221 × 2237 × 2437 × 2551 × 2851 × 3221 × 3571 × 3637 × 3833 × 4339 × 5101 × 5419 × 6577 × 6709 × 7621 × 7699 × 8269 × 8647 × 11093 × 13421 × 13441 × 14621 × 17293 × 26417 × 26881 × 31723 × 44371 × 81343 × 88741 × 114577 × 160967 × 189799 × 229153 × 292561 × 579281 × 581173 × 583367 × 1609669 × 3500201 × 119782433 × 212601841 × 2664097031 × 2931542417 × 43872038849 × 374857981681 × 4534166740403George Woltman, 2013
11251850413483992918774837...000000000000000000000000 2468 × 3140 × 566 × 749 × 1140 × 1331 × 1711 × 1912 × 239 × 297 × 3111 × 378 × 415 × 433 × 473 × 534 × 593 × 612 × 674 × 714 × 733 × 79 × 832 × 89 × 974 × 1014 × 1033 × 1093 × 1132 × 1273 × 1313 × 1372 × 1392 × 1492 × 151 × 1572 × 163 × 167 × 173 × 181 × 191 × 1932 × 197 × 199 × 2113 × 223 × 227 × 2292 × 239 × 251 × 257 × 263 × 2693 × 271 × 2812 × 293 × 3073 × 313 × 317 × 331 × 347 × 349 × 367 × 373 × 397 × 401 × 419 × 421 × 431 × 4432 × 449 × 457 × 461 × 467 × 491 × 4992 × 541 × 547 × 569 × 571 × 599 × 607 × 613 × 647 × 691 × 701 × 719 × 727 × 761 × 827 × 853 × 937 × 967 × 991 × 997 × 1013 × 1061 × 1087 × 1171 × 1213 × 1223 × 1231 × 1279 × 1381 × 1399 × 1433 × 1609 × 1613 × 1619 × 1723 × 1741 × 1783 × 1873 × 1933 × 1979 × 2081 × 2089 × 2221 × 2357 × 2551 × 2657 × 2671 × 2749 × 2791 × 2801 × 2803 × 3331 × 3433 × 4051 × 4177 × 4231 × 5581 × 5653 × 5839 × 6661 × 7237 × 7699 × 8081 × 8101 × 8269 × 8581 × 8941 × 10501 × 11833 × 12583 × 12941 × 13441 × 14281 × 15053 × 17929 × 19181 × 20809 × 21997 × 23063 × 23971 × 26399 × 26881 × 27061 × 28099 × 29251 × 32051 × 32059 × 32323 × 33347 × 33637 × 36373 × 38197 × 41617 × 51853 × 62011 × 67927 × 73547 × 77081 × 83233 × 92251 × 93253 × 124021 × 133387 × 141311 × 175433 × 248041 × 256471 × 262321 × 292561 × 338753 × 353641 × 441281 × 449653 × 509221 × 511801 × 540079 × 639083 × 696607 × 746023 × 922561 × 1095551 × 1401943 × 1412753 × 1428127 × 1984327 × 2556331 × 5112661 × 5714803 × 7450297 × 8334721 × 10715147 × 14091139 × 14092193 × 18739907 × 19270249 × 29866451 × 96656723 × 133338869 × 193707721 × 283763713 × 407865361 × 700116563 × 795217607 × 3035864933 × 3336809191 × 35061928679 × 143881112839 × 161969595577 × 287762225677 × 761838257287 × 840139875599 × 2031161085853 × 2454335007529 × 2765759031089 × 31280679788951 × 75364676329903 × 901563572369231 × 2169378653672701 × 4764764439424783 × 70321958644800017 × 79787519018560501 × 702022478271339803 × 1839633098314450447 × 165301473942399079669 × 604088623657497125653141 × 160014034995323841360748039 × 25922273669242462300441182317 × 15428152323948966909689390436420781 × 420391294797275951862132367930818883361 × 23735410086474640244277823338130677687887 × 628683935022908831926019116410056880219316806841500141982334538232031397827230330241George Woltman, 2001

Properties

Perfect numbers

A number n with σ = 2n is perfect.

Triperfect numbers

A number n with σ = 3n is triperfect. An odd triperfect number must exceed 1070 and have at least 12 distinct prime factors, the largest exceeding 105.

Variations

Unitary multiply perfect numbers

A positive integer n is called a unitary multi k-perfect number if σ* = kn. A unitary multiply perfect number is simply a unitary multi k-perfect number for some positive integer k. Equivalently, unitary multiply perfect numbers are those n for which n divides σ*. A unitary multi 2-perfect number is naturally called a unitary perfect number. In the case k > 2, no example of a unitary multi k-perfect number is known till now. It is known that if such a number exists, it must be even and greater than 10102 and must have more than forty four odd prime factors. This problem is probably very difficult to settle.
A divisor d of a positive integer n is called a unitary divisor if gcd = 1. The concept of unitary divisor was originally due to R. Vaidyanathaswamy who called such a divisor as block factor. The present terminology is due to E. Cohen. The sum of the unitary divisors of n is denoted by σ*.

Bi-unitary multiply perfect numbers

A positive integer n is called a bi-unitary multi k-perfect number if σ** = kn. This concept is due to Peter Hagis. A bi-unitary multiply perfect number is simply a bi-unitary multi k-perfect number for some positive integer k. Equivalently, bi-unitary multiply perfect numbers are those n for which n divides σ**. A bi-unitary multi 2-perfect number is naturally called a bi-unitary perfect number, and a bi-unitary multi 3-perfect number is called a bi-unitary triperfect number.
A divisor d of a positive integer n is called a bi-unitary divisor of n if the greatest common unitary divisor of d and n/d equals 1. This concept is due to D. Surynarayana. The sum of the bi-unitary divisors of n is denoted by σ**.