Naphthalene


Naphthalene is an organic compound with formula. It is the simplest polycyclic aromatic hydrocarbon, and is a white crystalline solid with a characteristic odor that is detectable at concentrations as low as 0.08 ppm by mass. As an aromatic hydrocarbon, naphthalene's structure consists of a fused pair of benzene rings. It is best known as the main ingredient of traditional mothballs.

History

In the early 1820s, two separate reports described a white solid with a pungent odor derived from the distillation of coal tar. In 1821, John Kidd cited these two disclosures and then described many of this substance's properties and the means of its production. He proposed the name naphthaline, as it had been derived from a kind of naphtha. Naphthalene's chemical formula was determined by Michael Faraday in 1826. The structure of two fused benzene rings was proposed by Emil Erlenmeyer in 1866, and confirmed by Carl Gräbe three years later.

Physical properties

A naphthalene molecule can be viewed as the fusion of a pair of benzene rings. As such, naphthalene is classified as a benzenoid polycyclic aromatic hydrocarbon.
The eight carbons that are not shared by the two rings carry one hydrogen atom each. For purpose of the standard IUPAC nomenclature of derived compounds, those eight atoms are numbered 1 through 8 in sequence around the perimeter of the molecule, starting with a carbon adjacent to a shared one. The shared carbons are labeled 4a and 8a.

Molecular geometry

The molecule is planar, like benzene. Unlike benzene, the carbon–carbon bonds in naphthalene are not of the same length. The bonds C1−C2, C3−C4, C5−C6 and C7−C8 are about 1.37 Å in length, whereas the other carbon–carbon bonds are about 1.42 Å long. This difference, established by X-ray diffraction, is consistent with the valence bond model in naphthalene and in particular, with the theorem of cross-conjugation. This theorem would describe naphthalene as an aromatic benzene unit bonded to a diene but not extensively conjugated to it, which is consistent with two of its three resonance structures.
Because of this resonance, the molecule has bilateral symmetry across the plane of the shared carbon pair, as well as across the plane that bisects bonds C2-C3 and C6-C7, and across the plane of the carbon atoms. Thus there are two sets of equivalent hydrogen atoms: the alpha positions, numbered 1, 4, 5, and 8, and the beta positions, 2, 3, 6, and 7. Two isomers are then possible for mono-substituted naphthalenes, corresponding to substitution at an alpha or beta position. Bicyclodecapentaene|Bicyclodecapentaene is a structural isomer with a fused 4–8 ring system and azulene is another, with a fused 5-7 ring system.
File:Bicyclo-6.2.0-decapentaene.svg|thumb|150px|left|Bicyclodecapentaene
The point group symmetry of naphthalene is D2h.

Electrical conductivity

Pure crystalline naphthalene is a moderate insulator at room temperature, with resistivity of about 1012 Ω m. The resistivity drops more than a thousandfold on melting, to about 4 × 108 Ω m. Both in the liquid and in the solid, the resistivity depends on temperature as ρ = ρ0 exp, where ρ0 and E are constant parameters, k is Boltzmann's constant, and T is absolute temperature. The parameter E is 0.73 in the solid. However, the solid shows semiconducting character below 100 K.

Chemical properties

Reactions with electrophiles

In electrophilic aromatic substitution reactions, naphthalene reacts more readily than benzene. For example, chlorination and bromination of naphthalene proceeds without a catalyst to give 1-chloronaphthalene and 1-bromonaphthalene, respectively. Likewise, whereas both benzene and naphthalene can be alkylated using Friedel–Crafts reactions, naphthalene can also be easily alkylated by reaction with alkenes or alcohols, using sulfuric or phosphoric acid catalysts.
In terms of regiochemistry, electrophiles attack at the alpha position. The selectivity for alpha over beta substitution can be rationalized in terms of the resonance structures of the intermediate: for the alpha substitution intermediate, seven resonance structures can be drawn, of which four preserve an aromatic ring. For beta substitution, the intermediate has only six resonance structures, and only two of these are aromatic. Sulfonation gives the "alpha" product naphthalene-1-sulfonic acid as the kinetic product but naphthalene-2-sulfonic acid as the thermodynamic product. The 1-isomer forms predominantly at 25 °C, and the 2-isomer at 160 °C.
Sulfonation to give the 1- and 2-sulfonic acid occurs readily:
Further sulfonation give di-, tri-, and tetrasulfonic acids.

Lithiation

Analogous to the synthesis of phenyllithium is the conversion of 1-bromonaphthalene to 1-lithionaphthalene, a lithium-halogen exchange:
The resulting lithionaphthalene undergoes a second lithiation, in contrast to the behavior of phenyllithium. These 1,8-dilithio derivatives are precursors to a host of peri-naphthalene derivatives.

Reduction and oxidation

With alkali metals, naphthalene forms the dark blue-green radical anion salts such as sodium naphthalenide, Na+C10H. The naphthalenide salts are strong reducing agents.
Naphthalene can be hydrogenated under high pressure in the presence of metal catalysts to give 1,2,3,4-tetrahydronaphthalene, also known as tetralin. Further hydrogenation yields decahydronaphthalene or decalin.
Oxidation with in the presence of vanadium pentoxide as catalyst gives phthalic anhydride:
This reaction is the basis of the main use of naphthalene. Oxidation can also be effected using conventional stoichiometric chromate or permanganate reagents.

Production

Most naphthalene is derived from coal tar. From the 1960s until the 1990s, significant amounts of naphthalene were also produced from heavy petroleum fractions during petroleum refining, but today petroleum-derived naphthalene represents only a minor component of naphthalene production.
Naphthalene is the most abundant single component of coal tar. Although the composition of coal tar varies with the coal from which it is produced, typical coal tar is about 10% naphthalene by weight. In industrial practice, distillation of coal tar yields an oil containing about 50% naphthalene, along with twelve other aromatic compounds. This oil, after being washed with aqueous sodium hydroxide to remove acidic components, and with sulfuric acid to remove basic components, undergoes fractional distillation to isolate naphthalene. The crude naphthalene resulting from this process is about 95% naphthalene by weight. The chief impurities are the sulfur-containing aromatic compound benzothiophene, indane, indene, and methylnaphthalene. Petroleum-derived naphthalene is usually purer than that derived from coal tar. Where required, crude naphthalene can be further purified by recrystallization from any of a variety of solvents, resulting in 99% naphthalene by weight, referred to as 80 °C. Approximately 1.3M tons are produced annually.
In North America, the coal tar producers are Koppers Inc., Ruetgers Canada Inc. and Recochem Inc., and the primary petroleum producer is Monument Chemical Inc. In Western Europe the well-known producers are Koppers, Ruetgers, and Deza. In Eastern Europe, naphthalene is produced by a variety of integrated metallurgy complexes in Russia, dedicated naphthalene and phenol makers INKOR, Yenakievsky Metallurgy plant in Ukraine and ArcelorMittal Temirtau in Kazakhstan.

Naphthalene in the interstellar medium

Naphthalene has been tentatively detected in the interstellar medium in the direction of the star Cernis 52 in the constellation Perseus. More than 20% of the carbon in the universe may be associated with polyaromatic hydrocarbons, including naphthalene.
Protonated cations of naphthalene are the source of part of the spectrum of the Unidentified Infrared Emissions. Protonated naphthalene differs from neutral naphthalene in that it has an additional hydrogen atom. The UIRs from
"" have been observed by astronomers. This research has been publicized as "mothballs in space."

Uses

Naphthalene is used mainly as a precursor to other chemicals. The single largest use of naphthalene is the industrial production of phthalic anhydride, although more phthalic anhydride is made from o-xylene. Many azo dyes are produced from naphthalene, and so is the insecticide 1-naphthyl-N-methylcarbamate. Other useful agrichemicals include naphthoxyacetic acids.
is a beta blocker. Hydrogenation of naphthalene gives tetralin, which is used as a hydrogen-donor solvent.

Naphthalenesulfonic acids and sulfonates

Many naphthalenesulfonic acids and sulfonates are useful. Alkyl naphthalene sulfonate are surfactants, The aminonaphthalenesulfonic acids, naphthalenes substituted with amines and sulfonic acids, are intermediates in the preparation of many synthetic dyes. The hydrogenated naphthalenes tetrahydronaphthalene and decahydronaphthalene are used as low-volatility solvents. Naphthalene sulfonic acids are also used in the synthesis of 1-naphthol and 2-naphthol, precursors for various dyestuffs, pigments, rubber processing chemicals and other chemicals and pharmaceuticals.
Naphthalene sulfonic acids are used in the manufacture of naphthalene sulfonate polymer plasticizers, which are used to produce concrete and plasterboard. They are also used as dispersants in synthetic and natural rubbers, and as tanning agents in leather industries, agricultural formulations, dyes and as a dispersant in lead–acid battery plates.
Naphthalene sulfonate polymers are produced by treating naphthalenesulfonic acid with formaldehyde, followed by neutralization with sodium hydroxide or calcium hydroxide. These products are commercially sold as superplasticizers for the production of high strength concrete.

Laboratory uses

Molten naphthalene provides an excellent solubilizing medium for poorly soluble aromatic compounds. In many cases it is more efficient than other high-boiling solvents, such as dichlorobenzene, benzonitrile, nitrobenzene and durene. The reaction of C60 with anthracene is conveniently conducted in refluxing naphthalene to give the 1:1 Diels–Alder adduct. The aromatization of hydroporphyrins has been achieved using a solution of DDQ in naphthalene.

Wetting agent and surfactant

Alkyl naphthalene sulfonates are used in many industrial applications as nondetergent wetting agents that effectively disperse colloidal systems in aqueous media. The major commercial applications are in the agricultural chemical industry, which uses ANS for wettable powder and wettable granular formulations, and the textile and fabric industry, which utilizes the wetting and defoaming properties of ANS for bleaching and dyeing operations.

As a fumigant

Naphthalene has been used as a household fumigant. It was once the primary ingredient in mothballs, although its use has largely been replaced in favor of alternatives such as 1,4-dichlorobenzene. In a sealed container containing naphthalene pellets, naphthalene vapors build up to levels toxic to both the adult and larval forms of many moths that attack textiles. Other fumigant uses of naphthalene include use in soil as a fumigant pesticide, in attic spaces to repel animals and insects, and in museum storage-drawers and cupboards to protect the contents from attack by insect pests.
Naphthalene is a repellent to opossums.

Other uses

It is used in pyrotechnic special effects such as the generation of black smoke and simulated explosions. It is used to create artificial pores in the manufacture of high-porosity grinding wheels. In the past, naphthalene was administered orally to kill parasitic worms in livestock. Naphthalene and its alkyl homologs are the major constituents of creosote. Naphthalene is used in engineering to study heat transfer using mass sublimation.

Health effects

Exposure to large amounts of naphthalene may damage or destroy red blood cells, most commonly in people with the inherited condition known as glucose-6-phosphate dehydrogenase deficiency, which over 400 million people suffer from. Humans, in particular children, have developed the condition known as hemolytic anemia, after ingesting mothballs or deodorant blocks containing naphthalene. Symptoms include fatigue, lack of appetite, restlessness, and pale skin. Exposure to large amounts of naphthalene may cause confusion, nausea, vomiting, diarrhea, blood in the urine, and jaundice.
The US National Toxicology Program held an experiment where male and female rats and mice were exposed to naphthalene vapors on weekdays for two years. Both male and female rats exhibited evidence of carcinogenesis with increased incidences of adenoma and neuroblastoma of the nose. Female mice exhibited some evidence of carcinogenesis based on increased incidences of alveolar and bronchiolar adenomas of the lung, while male mice exhibited no evidence of carcinogenesis.
The International Agency for Research on Cancer classifies naphthalene as possibly carcinogenic to humans and animals. The IARC also points out that acute exposure causes cataracts in humans, rats, rabbits, and mice; and that hemolytic anemia can occur in children and infants after oral or inhalation exposure or after maternal exposure during pregnancy. Under California's Proposition 65, naphthalene is listed as "known to the State to cause cancer". A probable mechanism for the carcinogenic effects of mothballs and some types of air fresheners containing naphthalene has been identified.

Regulation

agencies have set occupational exposure limits to naphthalene exposure. The Occupational Safety and Health Administration has set a permissible exposure limit at 10 ppm over an eight-hour time-weighted average. The National Institute for Occupational Safety and Health has set a recommended exposure limit at 10 ppm over an eight-hour time-weighted average, as well as a short-term exposure limit at 15 ppm.. Napthelene's minimum odor threshold is 0.084 ppm for humans.
Mothballs and other products containing naphthalene have been banned within the EU since 2008.
In China, the use of naphthalene in mothballs is forbidden. Danger to human health and the common use of natural camphor are cited as reasons for the ban.

Naphthalene derivatives

The partial list of naphthalene derivatives includes the following compounds:
NameChemical formulaMolar mass Melting point Boiling point Density Refractive index
1-Naphthoic acidC11H8O2172.18157300
1-Naphthoyl chlorideC11H7ClO190.6316–19190 1.2651.6552
1-NaphtholC10H8O144,1794–962781.224
1-NaphthaldehydeC11H8O156,181–2160
1-NitronaphthaleneC10H7NO2173.1753–573401.22
1-FluoronaphthaleneC10H7F146.16−192151.3231.593
1-ChloronaphthaleneC10H7Cl162.62−62591.1941.632
2-ChloronaphthaleneC10H7Cl162.6259.52561.1381.643
1-BromonaphthaleneC10H7Br207.07−22791.4891.670