Noise and vibration on maritime vessels are not the same but they have the same origin and come in many forms. The methods to handle the related problems are similar, to a certain level, where most shipboard noise problems are reduced by controlling vibration.
Diesel engines
When looking at diesel driven vessels, the engines induce large accelerations that travel from the foundation of the engine throughout the ship. In most compartments, this type of vibration normally manifests itself as audible noise. The problem with diesels is that, for a given size, there is a fixed amount of power generated per cylinder. To increase power it is necessary to add cylinders but, when cylinders are added, the crankshaft has to be lengthened and after a very limited number of additions, the lengthened crankshaft begins to flex and vibrate all on its own. This results in an increase of vibrations spread all over the ships structure. Crankshaft vibration can be reduced by a harmonic balancer.
s and gas turbines, on the other hand, when new and/or in good repair, do not, by themselves generate excessive vibration as long as the turbine blades are in a perfect condition and rotate in a smooth gas flow. But after some time microscopic defects appear and cause small pits to appear in the surface of the intake and the blades which set up eddies in the gas flow, resulting in loss of performance and vibrations. Vibration levels may change with different loading conditions or when doing a manoeuvre.
Exposure limits
Exposure to noise and vibrations is regulated and limits for maritime vessels are given in the ISO standard 6954: Guidelines for permissible mechanical vibrations on board seagoing vessels to protect personnel and crew. Because there are different noise regulations from country to country, the International Maritime Organization sets some standards for vessels. The table below gives some comparisons of preferred maximum noise levels on board of vessels and onshore levels.
Noise generated on board ships and submarines can have far-reaching effects on the ability of the vessel to operate safely and efficiently. Military vessels in particular need tobe quiet to avoid detection by sonar, so many methods have been used to limit a vessel's noise signature. Controlling noise is therefore a defense measure, most acutely for submarines.
Prevention
At the design table, the naval architect makes the necessary choices concerning the ship's structure to achieve an optimized design towards noise and vibration control. Decisions are made about the engine and shaft, what kind of instruments and material can be used to reduce noise and vibrations throughout the vessel and what is the best way to implement these. Advanced computer technology tries to simulate these vibrations under different ship conditions to provide an overview of weak spots. The generated vibrations are also compared with the natural frequencies of the different parts/sections and adaptions can be done to the structure.
Control at source
To control the mechanical vibrations at the origin, isolating fittings, elasticmounting of engines, elastic holding of pipes or dampers can be installed. These will absorb a part of the vibrations produced by the machines. To control the electromagnetic vibrations at the origin, skewing the electric motor or choosing a better slot/pole combination will reduce electromagnetic force harmonics or avoid resonances between magnetic forces and structural modes of the electric motor.
Maintenance
Regular maintenance will have a major influence on the performance of instruments and machines. Lubrication of the joints, tightening of the bolts, good alignment of stern contour of the vessel, adjusting of variables following the weekly and monthly schedule are the most effective routes to noise and vibration control.