Panavia Tornado


The Panavia Tornado is a family of twin-engine, variable-sweep wing multirole combat aircraft, jointly developed and manufactured by Italy, the United Kingdom, and West Germany. There are three primary Tornado variants: the Tornado IDS fighter-bomber, the suppression of enemy air defences Tornado ECR and the Tornado ADV interceptor aircraft.
The Tornado was developed and built by Panavia Aircraft GmbH, a tri-national consortium consisting of British Aerospace, MBB of West Germany, and Aeritalia of Italy. It first flew on 14 August 1974 and was introduced into service in 1979–1980. Due to its multirole design, it was able to replace several different fleets of aircraft in the adopting air forces. The Royal Saudi Air Force became the only export operator of the Tornado in addition to the three original partner nations. A tri-nation training and evaluation unit operating from RAF Cottesmore, the Tri-National Tornado Training Establishment, maintained a level of international co-operation beyond the production stage.
The Tornado was operated by the Royal Air Force, Italian Air Force, and RSAF during the Gulf War of 1991, in which the Tornado conducted many low-altitude penetrating strike missions. The Tornados of various services were also used in The Bosnian War, Kosovo War, Iraq War, in Libya during the Libyan civil war, as well as smaller roles in Afghanistan, Yemen, and Syria. Including all variants, 990 aircraft were built.

Development

Origins

During the 1960s, aeronautical designers looked to variable-geometry wing designs to gain the manoeuvrability and efficient cruise of straight wings with the speed of swept wing designs. The United Kingdom had cancelled the procurement of the TSR-2 and subsequent F-111K aircraft, and was still looking for a replacement for its Avro Vulcan and Blackburn Buccaneer strike aircraft. Britain and France had initiated the BAC/Dassault AFVG project in 1965, but this had ended with French withdrawal in 1967. Britain continued to develop a variable-geometry aircraft similar to the proposed AFVG, and sought new partners to achieve this. West German EWR had been developing the swing-wing EWR-Fairchild-Hiller A400 AVS Advanced Vertical Strike.
In 1968, West Germany, the Netherlands, Belgium, Italy and Canada formed a working group to examine replacements for the Lockheed F-104 Starfighter, initially called the Multi Role Aircraft , later renamed as the Multi Role Combat Aircraft . As the partner nations' requirements were so diverse, it was decided to develop a single aircraft that could perform a variety of missions that were previously undertaken by a fleet of different aircraft. Britain joined the MRCA group in 1968, represented by Air Vice-Marshal Michael Giddings, and a memorandum of agreement was drafted between Britain, West Germany, and Italy in May 1969.
By the end of 1968, the prospective purchases from the six countries amounted to 1,500 aircraft. Canada and Belgium had departed before any long-term commitments had been made to the programme; Canada had found the project politically unpalatable; there was a perception in political circles that much of the manufacturing and specifications were focused on Western Europe. France had made a favourable offer to Belgium on the Dassault Mirage 5.

Panavia Aircraft GmbH

On 26 March 1969, four partner nations – United Kingdom, Germany, Italy and the Netherlands, agreed to form a multinational company, Panavia Aircraft GmbH, to develop and manufacture the MRCA. The project's aim was to produce an aircraft capable of undertaking missions in the tactical strike, reconnaissance, air defence, and maritime roles. Various concepts, including alternative fixed-wing and single-engine designs, were studied while defining the aircraft. The Netherlands pulled out of the project in 1970, citing that the aircraft was too complicated and technical for the RNLAF's preferences, which had sought a simpler aircraft with outstanding manoeuvrability. An additional blow was struck when the German requirement reduced from an initial 600 aircraft to 324 in 1972. It has been suggested that Germany deliberately placed an unrealistically high initial order to secure the company headquarters and initial test flight in Germany rather than the UK, so as to have a bigger design influence.
When the agreement was finalised, the United Kingdom and West Germany each had a 42.5% stake of the workload, with the remaining 15% going to Italy; this division of the production work was heavily influenced by international political bargaining. The front fuselage and tail assembly was assigned to BAC in the United Kingdom; the centre fuselage to MBB in West Germany; and the wings to Aeritalia in Italy. Similarly, tri-national worksharing was used for engines and equipment. A separate multinational company, Turbo-Union, was formed in June 1970 to develop and build the RB199 engines for the aircraft, with ownership split 40% Rolls-Royce, 40% MTU, and 20% FIAT.
At the conclusion of the project definition phase in May 1970, the concepts were reduced to two designs; a single seat Panavia 100 which West Germany initially preferred, and the twin-seat Panavia 200 which the RAF preferred. The aircraft was briefly called the Panavia Panther, and the project soon coalesced towards the two-seat option. In September 1971, the three governments signed an Intention to Proceed document, at which point the aircraft was intended solely for the low-level strike mission, where it was viewed as a viable threat to Soviet defences in that role. It was at this point that Britain's Chief of the Defence Staff announced "two-thirds of the fighting front line will be composed of this single, basic aircraft type".

Prototypes and testing

The first of fifteen development aircraft flew on 14 August 1974 at Manching, Germany; the pilot, Paul Millett described his experience: "Aircraft handling was delightful... the actual flight went so smoothly that I did begin to wonder whether this was not yet another simulation". Flight testing led to the need for minor modifications. Airflow disturbances were responded to by re-profiling the engine intakes and the fuselage to minimise surging and buffeting experienced at supersonic speeds.
According to Jim Quinn, programmer of the Tornado development simulation software and engineer on the Tornado engine and engine controls, the prototype was safely capable of reaching supercruise, but the engines had severe safety issues at high altitude while trying to decelerate. At high altitude and low turbine speed the compressor did not provide enough pressure to hold back the combustion pressure and would result in a violent vibration as the combustion pressure backfired into the intake. To avoid this effect the engine controls would automatically increase the minimum idle setting as altitude increased, until at very high altitudes the idle setting was so high, however, that it was close to maximum dry thrust. This resulted in one of the test aircraft being stuck in a mach 1.2 supercruise at high altitude and having to reduce speed by turning the aircraft, because the idle setting at that altitude was so high that the aircraft could not decelerate.
The British Ministry of Supply ordered Chief Engineer Ted Talbot from the Concorde development team to provide intake design assistance to the Tornado development team in order to overcome these issues, which they hesitantly agreed to after noting that the Concorde intake data had apparently already been leaked to the Soviet Union. The German engineers working on the Tornado intake were unable to produce a functional Concorde style intake despite having data from the Concorde team. To make the problem worse, their management team incorrectly filed a patent on the Concorde design, and then tried to sue the British engineers who had provided the design to them. The German lawyers realised that the British had provided the designs to the German team, and requested further information to help their engineers overcome the problems with the Tornado intake, but Chief Engineer Talbot refused. According to Talbot, the Concorde engineers had determined the issue with the Tornado intake was that the engine did not respond to unexpected changes in the intake position, and therefore the engine was running at the wrong setting for a given position of the intake ramps. This was because the Concorde had similar issues due to control pressure not being high enough to maintain proper angles of the intake ramps. Aerodynamic forces could force the intakes into the improper position, and so they should have the ability to control the engines if this occurs. The Tornado intake system did not allow for this. Due to the behaviour of the German management team, the British engineers declined to share this information, and so the Tornado was not equipped with the more advanced intake design of the Concorde.
Testing revealed that a nose-wheel steering augmentation system, connecting with the yaw damper, was necessary to counteract the destabilising effect produced by deploying the thrust reverser during the landing roll.
From 1967 until 1984 Soviet KGB agents were provided details on the Tornado by the head of the West German Messerschmitt-Bölkow-Blohm Planning department, Manfred Rotsch.
Two prototypes were lost in accidents, both of which had been primarily caused by poor piloting decisions and errors leading to two ground collision incidents; a third Tornado prototype was seriously damaged by an incident involving pilot-induced pitch oscillation. During the type's development, aircraft designers of the era were beginning to incorporate features such as more sophisticated stability augmentation systems and autopilots. Aircraft such as the Tornado and the General Dynamics F-16 Fighting Falcon made use of these new technologies. Failure testing of the Tornado's triplex analogue command and stability augmentation system was conducted on a series of realistic flight control rigs; the variable-sweep wings in combination with varying, and frequently very heavy, payloads complicated the clearance process.

Production

The contract for the Batch 1 aircraft was signed on 29 July 1976. The first flight of a production aircraft was on 10 July 1979. The first aircraft were delivered to the RAF and German Air Force on 5 and 6 June 1979 respectively. The first Italian Tornado was delivered on 25 September 1981. On 29 January 1981, the Tri-National Tornado Training Establishment officially opened at RAF Cottesmore, remaining active in training pilots from all operating nations until 31 March 1999. The 500th Tornado to be produced was delivered to West Germany on 19 December 1987.
Export customers were sought after West Germany withdrew its objections to exporting the aircraft; Saudi Arabia was the only export customer of the Tornado. The agreement to purchase the Tornado was part of the controversial Al-Yamamah arms deal between British Aerospace and the Saudi government. Oman had committed to purchasing Tornados and the equipment to operate them for a total value of £250 million in the late 1980s, but cancelled the order in 1990 due to financial difficulties.
During the 1970s, Australia considered joining the MRCA programme to find a replacement for their ageing Dassault Mirage IIIs; ultimately the McDonnell Douglas F/A-18 Hornet was selected to meet the requirement. Canada similarly opted for the F/A-18 after considering the Tornado. Japan considered the Tornado in the 1980s, along with the F-16 and F/A-18, before selecting the Mitsubishi F-2. In the 1990s, both Taiwan and South Korea expressed interest in acquiring a small number of Tornado ECR aircraft. In 2001, EADS proposed a Tornado ECR variant with a greater electronic warfare capability for Australia.
Production came to an end in 1998; the last batch of aircraft produced going to the Royal Saudi Air Force, who had ordered a total of 96 IDS Tornados. In June 2011, it was announced that the Tornado fleet had flown collectively over one million flying hours. Aviation author Jon Lake noted that "The Trinational Panavia Consortium produced just short of 1,000 Tornados, making it one of the most successful postwar bomber programs". In 2008, AirForces Monthly said of the Tornado: "For more than a quarter of a century ... the most important military aircraft in Western Europe."

Design

Overview

The Panavia Tornado is a multirole, twin-engined aircraft designed to excel at low-level penetration of enemy defences. The mission envisaged during the Cold War was the delivery of conventional and nuclear ordnance on the invading forces of the Warsaw Pact countries of Eastern Europe; this dictated several significant features of the design. Variable wing geometry allowed for minimal drag during the low-level dash towards a well-prepared enemy. Advanced navigation and flight computers, including the then-innovative fly-by-wire system, greatly reduced the workload of the pilot during low-level flight and eased control of the aircraft. For long range missions, the Tornado has a retractable refuelling probe.
As a multirole aircraft, the Tornado is capable of undertaking more mission profiles than the anticipated strike mission; various operators replaced multiple aircraft types with the Tornado as a common type – the use of dedicated single role aircraft for specialist purposes such as battlefield reconnaissance, maritime patrol duties, or dedicated electronic countermeasures were phased out – either by standard Tornados or modified variants, such as the Tornado ECR. The most extensive modification from the base Tornado design was the Tornado ADV, which was stretched and armed with long range anti-aircraft missiles to serve in the interceptor role.
Tornado operators have undertaken various life extension and upgrade programmes to keep their Tornado fleets as viable frontline aircraft. With these upgrades it is projected that the Tornado shall be in service until 2025, more than 50 years after the first prototype took flight.

Variable-sweep wing

In order for the Tornado to perform well as a low-level supersonic strike aircraft, it was considered necessary for it to possess good high-speed and low-speed flight characteristics. To achieve high-speed performance, a swept or delta wing is typically adopted, but these wing designs are inefficient at low speeds. To operate at both high and low speeds with great effectiveness, the Tornado uses a variable-sweep wing. This approach had been adopted by earlier aircraft, such as the American General Dynamics F-111 Aardvark strike fighter, and the Soviet Mikoyan-Gurevich MiG-23 fighter. The smaller Tornado has many similarities with the F-111, however the Tornado differs in being a multi-role aircraft with more advanced onboard systems and avionics.
The level of wing sweep can be altered in flight at the pilot's control. The variable wing can adopt any sweep angle between 25 degrees and 67 degrees, with a corresponding speed range for each angle. Some Tornado ADVs were outfitted with an automatic wing-sweep system to reduce pilot workload. When the wings are swept back, the exposed wing area is lowered and drag is significantly decreased, which is conducive to performing high-speed low-level flight. The weapons pylons pivot with the angle of the variable-sweep wings so that the stores point in the direction of flight and do not hinder any wing positions.
In development, significant attention was given to the Tornado's short-field take-off and landing performance. Germany, in particular, encouraged this design aspect. For shorter take-off and landing distances, the Tornado can sweep its wings forwards to the 25-degree position, and deploy its full-span flaps and leading edge slats to allow the aircraft to fly at slower speeds. These features, in combination with the thrust reverser-equipped engines, give the Tornado excellent low-speed handling and landing characteristics.

Avionics

The Tornado features a tandem-seat cockpit, crewed by a pilot and a navigator/weapons officer; both electromechanical and electro-optical controls are used to fly the aircraft and manage its systems. An array of dials and switches are mounted on either side of a centrally placed CRT monitor, controlling the navigational, communications, and weapons-control computers. BAE Systems developed the Tornado Advanced Radar Display Information System, a multi-function display, to replace the rear cockpit's Combined Radar and Projected Map Display; the RAF began installing TARDIS on the GR4 fleet in 2004.
The primary flight controls of the Tornado are a fly-by-wire hybrid, consisting of an analogue Command and Stability Augmentation System connected to a digital Autopilot & Flight Director System. In addition a level of mechanical reversion capacity was retained to safeguard against potential failure. To enhance pilot awareness, artificial feel was built into the flight controls, such as the centrally located stick. Because the Tornado's variable wings enable the aircraft to drastically alter its flight envelope, the artificial responses adjust automatically to wing profile changes and other changes to flight attitude. As a large variety of munitions and stores can be outfitted, the resulting changes to the aircraft's flight dynamics are routinely compensated for by the flight stability system.
The Tornado incorporates a combined navigation/attack Doppler radar that simultaneously scans for targets and conducts fully automated terrain-following for low-level flight operations. Being able to conduct all-weather hands-off low-level flight was considered one of the core advantages of the Tornado. The Tornado ADV had a different radar system to other variants, designated AI.24 Foxhunter, as it is designed for air defence operations. It was capable of tracking up to 20 targets at ranges of up to. The Tornado was one of the earliest aircraft to be fitted with a digital data bus for data transmission. A Link 16 JTIDS integration on the F3 variant enabled the exchange of radar and other sensory information with nearby friendly aircraft.
Some [|Tornado variants] carry different avionics and equipment, depending on their mission. The Tornado ECR operated by Germany and Italy is devoted to Suppression of Enemy Air Defences missions. The Tornado ECR is equipped with an emitter-locator system to detect radar use. German ECRs have a Honeywell infrared imaging system for reconnaissance flights. RAF and RSAF Tornados have the Laser Range Finder and Marked Target Seekers for targeting laser-guided munitions. In 1991, the RAF introduced TIALD, allowing Tornado GR1s to laser-designate their own targets.
The GR1A and GR4A reconnaissance variants were equipped with TIRRS, consisting of one SLIR sensor on each side of the fuselage forward of the engine intakes to capture oblique images, and a single IRLS sensor mounted on the fuselage's underside to provide vertical images. TIRRS recorded images on six S-VHS video tapes. The newer RAPTOR reconnaissance pod replaced the built-in TIRRS system.

Armament and equipment

The Tornado is cleared to carry the majority of air-launched weapons in the NATO inventory, including various unguided and laser-guided bombs, anti-ship and anti-radiation missiles, as well as specialised weapons such as anti-personnel mines and anti-runway munitions. To improve survivability in combat, the Tornado is equipped with onboard countermeasures, ranging from flare and chaff dispensers to electronic countermeasure pods that can be mounted under the wings. Underwing fuel tanks and a buddy store aerial refuelling system that allows one Tornado to refuel another are available to extend the aircraft's range.
KC-135 Stratotanker in September 1997
In the decades since the Tornado's introduction, all of the Tornado operators have undertaken various upgrade and modification programmes to allow new weapons to be used by their squadrons. Amongst the armaments that the Tornado has been adapted to deploy are the Enhanced Paveway and Joint Direct Attack Munition bombs, and modern cruise missiles such as the Taurus and Storm Shadow missiles. These upgrades have increased the Tornado's capabilities and combat accuracy. Precision weapons such as cruise missiles have replaced older munitions such as cluster bombs.
Strike variants have a limited air-to-air capability with AIM-9 Sidewinder or AIM-132 ASRAAM air-to-air missiles. The Tornado ADV was outfitted with beyond visual range AAMs such as the Skyflash and AIM-120 AMRAAM missiles. The Tornado is armed with two Mauser BK-27 revolver cannon internally mounted underneath the fuselage; the Tornado ADV was only armed with one cannon. When the RAF GR1 aircraft were converted to GR4, the FLIR sensor replaced the left hand cannon, leaving only one; the GR1A reconnaissance variant gave up both its guns to make space for the sideways looking infra-red sensors. The Mauser BK-27 was developed specifically for the Tornado, but has since been used on several other European fighters, such as the Dassault/Dornier Alpha Jet, Saab JAS 39 Gripen, and Eurofighter Typhoon.
The Tornado is capable of delivering air-launched nuclear weapons. In 1979, Britain considered replacing its Polaris submarines with either the Trident submarines or the Tornado as the main bearer of its nuclear deterrent. Although the UK proceeded with Trident, several Tornado squadrons based in Germany were assigned to SACEUR to deter a major Soviet offensive with both conventional and nuclear weapons, namely the WE.177 nuclear bomb, which was retired in 1998. German and Italian Tornados are capable of delivering US B61 nuclear bombs, which are made available through NATO.

Engine

Britain considered the selection of Rolls-Royce to develop the advanced engine for the MRCA to be essential, and was strongly opposed to adopting an engine from an American manufacturer, to the point where the UK might have withdrawn over the issue. In September 1969, Rolls-Royce's RB199 engine was selected to power the MRCA. One advantage over the US competition was that a technology transfer between the partner nations had been agreed; the engine was to be developed and manufactured by a joint company, Turbo-Union. The programme was delayed by Rolls-Royce's entry into receivership in 1971. however the nature of the multinational collaboration process helped avoid major disruption of the Tornado programme. Research from the supersonic airliner Concorde contributed to the development and final design of the RB199 and of the engine control units.
To operate efficiently across a wide range of conditions and speeds up to Mach 2, the RB199 and several other engines make use of variable intake ramps to control the air flow. The hydraulic system is pressurised by syphoning power from both or either operational engine; the hydraulics are completely contained within the airframe rather than integrating with the engine to improve safety and maintainability. In case of double-engine, or double-generator, failure, the Tornado has a single-use battery capable of operating the fuel pump and hydraulics for up to 13 minutes.
Relatively rarely among fighter aircraft, the RB199 is fitted with thrust reversers to decrease the distance required to safely land. To fully deploy the thrust reverser during landings, the yaw damper is connected to the steering of the nosewheel to provide greater stability.
In August 1974, the first RB199 powered flight of a prototype Tornado occurred and the engine completed its qualification tests in late 1978. The final production standard engine met both reliability and performance standards, though the development cost had been higher than predicted, in part due to the ambitious performance requirements. At the time of the Tornado's introduction to service, the turbine blades of the engine suffered from a shorter life span than desired, which was rectified by the implementation of design revisions upon early-production engines. Several uprated engines were developed and used on both the majority of Tornado ADVs and Germany's Tornado ECRs. The DECU is the current engine control unit for RB199 engines superseding the analogue MECU also known as CUE.

Upgrades

Being designed for low-level operations, the Tornado required modification to perform in medium level operations that the RAF adopted in the 1990s. The RAF's GR1 fleet was extensively re-manufactured as Tornado GR4s. Upgrades on Tornado GR4s included a Forward looking infrared, a wide-angle HUD, improved cockpit displays, NVG capabilities, new avionics, and a Global Positioning System receiver. The upgrade eased the integration of new weapons and sensors which were purchased in parallel, including the Storm Shadow cruise missile, the Brimstone anti-tank missile, Paveway III laser-guided bombs and the RAPTOR reconnaissance pod. The first flight of a Tornado GR4 was on 4 April 1997. The RAF accepted its first delivery on 31 October 1997 and deliveries were completed in 2003. In 2005, the RSAF opted to have their Tornado IDSs undergo a series of upgrades to become equivalent to the RAF's GR4 configuration. On 21 December 2007 BAE signed a £210m contract for CUSP, the Capability Upgrade Strategy. This project would see RAF GR4/4A improved in two phases, starting with the integration of the Paveway IV bomb and a communications upgrade, followed by a new tactical datalink in Phase B.
Beginning in 2000, German IDS and ECR Tornados received the ASSTA 1 upgrade. ASSTA 1 involved a replacement weapons computer, new GPS and Laser Inertial navigation systems. The new computer allowed the integration of the HARM III, HARM 0 Block IV/V and Taurus KEPD 350 missiles, the Rafael Litening II laser designator pod and GBU-24 Paveway III laser-guided bombs. The ASSTA 2 upgrade began in 2005, primarily consisting of several new digital avionics systems and a new ECM suite; these upgrades are to be only applied to 85 Tornados, as the Tornado is being replaced in part by the Eurofighter Typhoon. The ASSTA 3 upgrade programme, started in 2008, will introduce support for the laser-targeted Joint Direct Attack Munition along with further software changes.
In January 2016, the Bild newspaper revealed that the newest upgrade of the ASSTA suite to version 3.1, which includes colour multifunctional LCD screens in place of monochrome CRT displays, is interfering with helmet-mounted night-vision optical displays worn by pilots, rendering German Tornado bombers deployed to Syria useless for night missions. The defence ministry admitted that bright cockpit lights could be a distraction for pilots, and disclosed that the solution will be implemented in a few weeks, but denied the need to fly night missions in Syria.
BAE Systems announced that, in December 2013, it had test flown a Tornado equipped with parts that were made with 3D printing equipment. The parts included a protective cover for the radio, a landing-gear guard and air-intake door support struts. The test demonstrated the feasibility of making replacement parts quickly and cheaply at the air base hosting the Tornado. The company claimed that, with some of the parts costing less than £100 per piece to manufacture, 3D printing already resulted in savings of more than £300,000 and would offer further potential cost savings of more than £1.2 million through 2017.

Operational history

German Air Force (Luftwaffe)

The first Tornado prototype made its first flight on 14 August 1974 from Ingolstadt Manching Airport, in what was then West Germany. Deliveries of production Tornados began on 27 July 1979. The total number of Tornados delivered to the German Air Force numbered 247, including 35 ECR variants. Originally Tornados equipped five fighter-bomber wings, with one tactical conversion unit and four front line wings, replacing the Lockheed F-104 Starfighter. When one of the two Tornado wings of the German Navy was disbanded in 1994, its aircraft were used to re-equip a Luftwaffe's reconnaissance wing formerly equipped with RF-4E Phantoms.
14 German Tornados undertook combat operations as a part of NATO's campaign during the Bosnian War. The Tornados, operating from Piacenza, Italy, flew reconnaissance missions to survey damage inflicted by previous strikes and to scout targets for other aircraft to strike. These reconnaissance missions were reportedly responsible for a significant improvement in target selection throughout the campaign.
In 1999, German Tornados participated in Operation Allied Force, NATO's military operation against the Federal Republic of Yugoslavia during the Kosovo War. This was Germany's first offensive air mission since World War II. The ECR aircraft would escort various allies' aircraft while carrying several AGM-88 HARM missiles to counter attempted use of radar against the allied aircraft. During the Kosovo hostilities, Germany's IDS Tornados would routinely conduct reconnaissance flights to identify both enemy ground forces and civilian refugees within Yugoslavia. The German Tornados flew 2108 hours and 446 sorties, firing 236 HARM missiles at hostile targets.
taking off from Eielson Air Force Base, Alaska in 2004
In June 2007, a pair of Luftwaffe Tornados flew reconnaissance missions over an anti-globalisation demonstration during the 33rd G8 summit in Heiligendamm. Following the mission, the German Defence Ministry admitted one aircraft had broken the minimum flying altitude and that mistakes were made in the handling of security of the summit.
In 2007, a detachment of six Tornados of the Aufklärungsgeschwader 51 "Immelmann" were deployed to Mazar-i-Sharif, Northern Afghanistan, to support NATO forces. The decision to send Tornados to Afghanistan was controversial: one political party launched an unsuccessful legal bid to block the deployment as unconstitutional. In support of the Afghanistan mission, improvements in the Tornado's reconnaissance equipment were accelerated; enhancing the Tornado's ability to detect hidden improvised explosive devices. The German Tornados were withdrawn from Afghanistan in November 2010.
Defence cuts announced in March 2003 resulted in the decision to retire 90 Tornados from service with the Luftwaffe. This led to a reduction in its Tornado strength to four wings by September 2005. On 13 January 2004, the then German Defence Minister Peter Struck announced further major changes to the German armed forces. A major part of this announcement is the plan to cut the German fighter fleet from 426 in early 2004 to 265 by 2015. The German Tornado force is to be reduced to 85, with the type expected to remain in service with the Luftwaffe until 2025. The aircraft being retained have been undergoing a service life extension programme. Currently, the Luftwaffe operates Tornados with Tactical Wings Taktisches Luftwaffengeschwader 33 in Cochem / Büchel Air Base, Rhineland-Palatinate and with Taktisches Luftwaffengeschwader 51 "Immelmann" in Jagel, Schleswig-Holstein.
German Tornado aircrew training took place at Holloman Air Force Base in New Mexico, US from January 1996 when the that time named Taktische Ausbildungskommando der Luftwaffe USA was responsible for training both German F-4 Phantom and Tornado crews. In 1999 the training command was renamed as Fliegerisches Ausbildungszentrum der Luftwaffe. In March 2015, Defense Minister Ursula von der Leyen decided to continue this training in Germany. In September 2017, flight training in Holloman for the Tornado was discontinued and transferred to Taktischen Luftwaffengeschwader 51 in Jagel with the US location command dissolved in 2019.
In April 2020, Germany announced its replacement for its Tornado aircraft will be a split purchase of 30 F/A-18E/F Super Hornets, 15 EA-18G Growlers and 55 Eurofighter Typhoons. The Super Hornet was selected due to its compatibility with nuclear weapons and availability of an electronic attack version. As of March 2020, the Super Hornet is not certified for the B61 nuclear bombs, but Dan Gillian, head of Boeing's Super Hornet program, previously stated that "We certainly think that we, working with the U.S. government, can meet the German requirements there on the timeline."

German Navy (Marineflieger)

In addition to the order made by the Luftwaffe, the German Navy's Marineflieger also received 112 of the IDS variant in the anti-shipping and marine reconnaissance roles, again replacing the Starfighter. These equipped two wings, each with a nominal strength of 48 aircraft. The principal anti-ship weapon was the AS.34 Kormoran anti-ship missile, which were initially supplemented by unguided bombs and BL755 cluster munitions, and later by AGM-88 HARM anti-radar missiles. Pods fitted with panoramic optical cameras and an infrared line scan were carried for the reconnaissance mission.
The end of the Cold War and the signing of the CFE Treaty gave rise to a requirement for Germany to reduce the size of its armed forces, including the number of combat aircraft. To meet this need, one of the Marineflieger's Tornado wings was disbanded on 1 January 1994; its aircraft replaced the Phantoms of a Luftwaffe reconnaissance wing. The second wing was enlarged and continued in the anti-shipping, reconnaissance and anti-radar roles until it was disbanded in 2005 with its aircraft and duties passed on to the Luftwaffe.

Italian Air Force (Aeronautica Militare)

The first Italian prototype made its maiden flight on 5 December 1975 from Turin, Italy. The Aeronautica Militare received a total of 100 Tornado IDSs. 16 A-200s were subsequently converted to the ECR configuration; the first Italian Tornado ECR was delivered on 27 February 1998. As a stop-gap measure for 10 years the Aeronautica Militare additionally operated 24 Tornado ADVs in the air defence role, which were leased from the RAF to cover the service gap between the retirement of the Lockheed F-104 Starfighter and the introduction of the Eurofighter Typhoon.
exercise Dragon Hammer, May 1987
Italian Tornados, along with RAF Tornados, took part in the first Gulf War in 1991. Operation Locusta saw eight Tornado IDS interdictors deployed from Gioia del Colle, Italy, to Al Dhafra, Abu Dhabi, as a part of Italy's contribution to the coalition. During the conflict, one aircraft was lost to Iraqi anti-aircraft fire, the pilots ejected safely and were captured by Iraqi forces. A total of 22 Italian Tornados were deployed in the NATO-organised Operation Allied Force over Kosovo in 1999, the A-200s served in the bombing role while the EA-200s patrolled the combat region, acting to suppress enemy anti-aircraft radars, firing 115 AGM-88 HARM missiles.
In 2000, with major delays hampering the Eurofighter, the Aeronautica Militare began a search for another interim fighter. While the Tornado itself was considered, any long term extension to the lease would have involved upgrade to RAF CSP standard and thus was not considered cost effective. In February 2001, Italy announced its arrangement to lease 35 F-16s from the United States under the PEACE CAESAR programme. The Aeronautica Militare returned its Tornado ADVs to the RAF, with the final aircraft arriving at RAF St Athan on 7 December 2004. One aircraft was retained for static display purposes at the Italian Air Force Museum.
In July 2002, Italy signed a contract with the Tornado Management Agency and Panavia for the upgrading of 18 A-200s, the first of which was received in 2003. The upgrade introduced improved navigation systems and the ability to carry new weapons, including the Storm Shadow cruise missile, Joint Direct Attack Munition and Paveway III laser-guided bombs.
, 2011
In response to anticipated violence during the 2010 Afghanistan elections, Italy, along with several other nations, increased its military commitment in Afghanistan, dispatching four A-200 Tornados to the region. Italy has opted to extend the Tornado's service life at the expense of alternative ground-attack aircraft such as the AMX International AMX; in 2010 a major upgrade and life extension programme was initiated, to provide new digital displays, Link 16 communications capability, night-vision goggles compatibility, and several other upgrades. In the long term, it is planned to replace the Tornado IDS/ECR fleet in Italian service with the Lockheed Martin F-35 Lightning II, with the final Italian Tornado scheduled to be phased out in 2025. The Aeronautica Militare received its first of an eventual 15 upgraded Tornado EA-200s on 15 June 2013.
Italian Tornado A-200 and EA-200 aircraft participated in the enforcement of a UN no-fly zone during the 2011 military intervention in Libya. Various coalition aircraft operated from bases in Italy, including RAF Tornados. Italian military aircraft delivered a combined 710 guided bombs and missiles during the strikes against Libyan targets. Of these Aeronautica Militare Tornados and AMX fighter-bombers released 550 guided bombs and missiles, and Italian Navy AV-8Bs delivered 160 guided bombs. Italian Tornados launched 20 to 30 Storm Shadow cruise missiles with the rest consisting of Paveway and JDAM guided bombs.
On 19 August 2014, two Aeronautica Militare Tornados collided in mid-air during a training mission near Ascoli. On 14 November 2014, Italy announced it was sending four Tornado aircraft with 135 support staff to Ahmad al-Jaber Air Base and to 2 other bases in Kuwait in participation of coalition operations against the Islamic State. The four aircraft will be used for reconnaissance missions only.
In October 2018, it was announced that the EA-200 Tornado had successfully completed operational testing of the AGM-88E AARGM, providing capabilities of an "expanded target set, counter-shutdown capability, advanced signals processing for improved detection and locating, geographic specificity, and a weapon impact-assessment broadcast capability."

Royal Air Force

Nicknamed the "Tonka" by the British, their first prototype made its maiden flight on 30 October 1974 from BAC Warton. The first full production Tornado GR1 flew on 10 July 1979 from Warton. The first RAF Tornados were delivered to the TTTE at RAF Cottesmore on 1 July 1980. Crew that qualified from the TTTE went onto the Tornado Weapons Conversion Unit, which formed on 1 August 1981 at RAF Honington, before being posted to a front-line squadron. No. IX Squadron became the first front-line squadron in the world to operate the Tornado when it reformed on 1 June 1982, having received its first Tornado GR1 ZA586 on 6 January 1982. No. IX Squadron was declared strike combat ready to the Supreme Allied Commander Europe in January 1983. Two more squadrons were formed at RAF Marham in 1983 – No. 617 Squadron on 1 January and No. 27 Squadron on 12 August. The first RAF Tornado GR1 loss was on 27 September 1983 when ZA586 suffered complete electrical failure and crashed. Navigator Flt. Lt. Nigel Nickles ejected while the pilot Sqn. Ldr. Michael Stephens died in the crash after ordering ejection. In January 1984, the TWCU adopted the guise of No. 45 Squadron.
RAF Germany began receiving Tornados after the formation of No. XV Squadron on 1 September 1983 at RAF Laarbruch followed by No. 16 Squadron in January 1984. They were then joined by No. 20 Squadron in May 1984. Unlike the Tornado squadrons based in the UK which were under control of the British military, those stationed in RAFG were under the control of SACEUR, with the aircraft on Quick Reaction Alert, "QRA ", being equipped with the WE.177 nuclear bomb. In the event of the Cold War going 'hot', the majority of RAFG Tornado squadrons were tasked with destroying Warsaw Pact airfields and surface-to-air missile sites in East Germany. While No. 20 Squadron was given a separate responsibility of destroying bridges over the rivers Elbe and Weser to prevent Warsaw Pact forces from advancing. By early 1985, Nos. XV, 16 and 20 Squadrons at RAF Laarbruch had been declared strike combat ready to SACEUR.
at RAF Brize Norton, September 1991
Tornados began to arrive at RAF Brüggen in September 1984 with the formation of No. 31 Squadron. No. 17 Squadron was formed in December 1984, with the two Brüggen squadrons joined by No. 14 Squadron in mid-1985. No. IX Squadron relocated from RAF Honington to RAF Brüggen on 1 October 1986, arriving in a diamond nine formation. The outcome of the Reykjavík Summit in October 1986 between Ronald Reagan and Mikhail Gorbachev led the end of QRA for the Tornado force. By the end of 1986, the Tornado GR1 fleet had been equipped with a Laser Ranger and Marked Target Seeker under the nose, and had begun to be equipped with the BOZ-107 chaff and flare dispenser.
The Tornado made its combat debut as part of Operation Granby, the British contribution to the Gulf War in 1991. This saw 49 RAF Tornado GR1s deploy to Muharraq Airfield in Bahrain and to Tabuk Air Base and Dhahran Airfield in Saudi Arabia. 18 Tornado F3s were deployed to provide air cover, the threat of their long range missiles being a deterrent to Iraqi pilots, who would deliberately avoid combat when approached. Early on in the conflict, the GR1s targeted military airfields across Iraq, deploying a mixture of unguided bombs in loft-bombing attacks and specialised JP233 runway denial weapons. On 17 January 1991, the first Tornado to be lost was shot down by an Iraqi SA-16 missile following a failed low-level bombing run. On 19 January, another RAF Tornado was shot down during an intensive raid on Tallil Air Base. The impact of the Tornado strikes upon Iraqi air fields is difficult to determine. A total of six RAF Tornados were lost in the conflict, four were lost while delivering unguided bombs, one was lost after delivering JP233, and one trying to deliver laser-guided bombs.
The UK sent out a detachment of Blackburn Buccaneer aircraft equipped with Westinghouse Electric Corporation Pave Spike laser designators, allowing Tornado GR1s to drop precision guided weapons guided by the Buccaneers. A planned programme to fit GR1s with the GEC-Marconi TIALD laser designation system was rapidly accelerated to give the Tornado force the ability to self-designate targets. Author Claus-Christian Szejnmann declared that the TIALD pod enabled the GR1 to "achieve probably the most accurate bombing in the RAF's history". Although laser designation proved effective in the Gulf War, only 23 TIALD pods had been purchased by 2000; shortages hindered combat operations over Kosovo.
, June 1992
After the war's opening phase, the GR1s switched to medium-level strike missions; typical targets included munition depots and oil refineries. Only the reconnaissance Tornado GR1As continued flying the low-altitude high-speed profile, emerging unscathed despite the inherent danger in conducting pre-attack reconnaissance. After the conflict, Britain maintained a military presence in the Gulf. Around six GR1s were based at Ali Al Salem airbase in Kuwait, contributing the southern no-fly zone as part of Operation Southern Watch. Six additional GR1s participated in Operation Provide Comfort over Northern Iraq.
The upgraded Tornado GR4 made its operational debut in Operation Southern Watch; patrolling Iraq's southern airspace from bases in Kuwait. Both Tornado GR1s and GR4s based at Ali Al Salem, Kuwait, took part in coalition strikes at Iraq's military infrastructure during Operation Desert Fox in 1998. In December 1998, an Iraqi anti-aircraft battery fired six to eight missiles at a patrolling Tornado. The battery was later attacked in retaliation, no aircraft were lost during the incident. It was reported that during Desert Fox RAF Tornados had successfully destroyed 75% of allotted targets, and out of the 36 missions planned, 28 had been successfully completed.
The GR1 participated in the Kosovo War in 1999. Tornados initially operated from RAF Brüggen, Germany and later moved to Solenzara Air Base, Corsica. Experiences from Kosovo led to the RAF procuring AGM-65 Maverick missiles and Enhanced Paveway smart bombs for the Tornado. Following the Kosovo War, the GR1 was phased out as aircraft were upgraded to GR4 standard, the final upgrade was returned to the RAF on 10 June 2003.
The GR4 was used in Operation Telic, Britain's contribution to the 2003 invasion of Iraq. RAF Tornados flew alongside American aircraft in the opening phase of the war, striking Iraqi installations. Aiming to minimise civilian casualties, Tornados deployed the Storm Shadow cruise missile for the first time. Whilst 25% of the UK's air-launched weapons in Kosovo were precision-guided, four years later in Iraq this ratio increased to 85%.
On 23 March 2003, a Tornado GR4 was shot down over Iraq by friendly fire from a US Patriot missile battery, killing both crew members. In July 2003, a US board of inquiry exonerated the battery's operators, observing the Tornado's "lack of functioning IFF " as a factor in the incident. Problems with Patriot were also suggested as a factor, multiple incidents of mis-identification of friendly aircraft have occurred, including the fatal shootdown of a US Navy F/A-18 a few weeks after the Tornado's loss. Britain withdrew the last of its Tornados from Iraq in June 2009.
In early 2009, several GR4s arrived at Kandahar Airfield, Afghanistan to replace the British Aerospace Harrier GR7/9 aircraft which had been deployed there since November 2004. In 2009, Paveway IV guided bombs were brought into service on the RAF's Tornados, having been previously used in Afghanistan by the Harrier II. In Summer 2010, extra Tornados were dispatched to Kandahar for the duration of the 2010 Afghan election. British Tornados ended operations in Afghanistan in November 2014, having flown over 5,000 pairs sorties over 33,500 hours, including 600 "shows of force" to deter Taliban attacks. During more than 70 engagements, some 140 Brimstone missiles and Paveway IV bombs were deployed and over 3,000 27 mm cannon shells were fired.
Prior to the 2010 Strategic Defence and Security Review 's publication, the Tornado's retirement was under consideration with savings of £7.5 billion anticipated. The SDSR announced the Tornado would be retained at the expense of the Harrier II, although numbers would decline in the transition to the Eurofighter Typhoon and the F-35 Lightning II. By July 2013, 59 RAF GR4s were receiving the CUSP avionics upgrade, which achieved Initial Service Date in March 2013.
, September 2014
On 18 March 2011, British Prime Minister David Cameron announced that Tornados and Typhoons would enforce a no-fly zone in Libya. In March 2011, several Tornados flew strike missions against targets inside Libya in what were, according to Defence Secretary Liam Fox, "the longest range bombing mission conducted by the RAF since the Falklands conflict". A variety of munitions were used during Tornado operations over Libya, including laser-guided bombs and Brimstone missiles.
In August 2014, Tornado GR4s were deployed to RAF Akrotiri, Cyprus to support refugees sheltering from Islamic State militants in the Mount Sinjar region of Iraq. The decision came three days after the United States began conducting air attacks against the Islamic State. Tornados were pre-positioned to gather situational awareness in the region. On 29 September 2014, three days after Parliament approved airstrikes against Islamic State forces inside Iraq, two Tornados conducted their first armed reconnaissance mission in conjunction with coalition aircraft. The next day, two Tornados made the first airstrike on a heavy weapons post and an armoured vehicle, supporting Kurdish forces in northwest Iraq.
By 1 March 2015, eight RAF Tornados had been deployed to Akrotiri and conducted 159 airstrikes against IS targets in Iraq. On 2 December 2015, Parliament approved air strikes in Syria as well as Iraq to combat the growing threat of ISIL; Tornados begun bombing that evening. On 14 April 2018, four Tornado GR4s, launched from RAF Akrotiri, struck a Syrian military facility with Storm Shadow cruise missiles in response to a suspected chemical attack on Douma by the Syrian regime the previous week.
, January 2019.
On 10 July 2018, nine Tornado GR4s from RAF Marham participated in a flypast over London to celebrate 100 years of the RAF. During late 2018, the RAF commemorated the Tornado's service with three special schemes: ZG752 paid homage to its early years with a green/grey wraparound camouflage; ZG775 and ZD716 both wore schemes commemorating the final units to operate the type – No. IX Squadron and No. 31 Squadron respectively. On 31 January 2019, the Tornado GR4 flew its last operational sorties in Operation Shader. The eight Tornados formerly stationed at RAF Akrotiri returned to RAF Marham in early February 2019, their duties assumed by six Typhoons. Between September 2014 and January 2019, RAF Tornados accounted for 31% of the estimated 4,315 casualties inflicted upon ISIL by the RAF during the operation.
To celebrate 40 years of service and to mark the type's retirement, several flypasts were carried out on 19, 20 and 21 February over locations such as BAE Warton, RAF Honington and RAF Lossiemouth. On 28 February, nine Tornados flew out of RAF Marham for a diamond nine formation flypast over a graduation parade at RAF Cranwell before returning and carrying out a series of passes over RAF Marham. On 14 March 2019 the final flight of an RAF Tornado was carried out by Tornado GR4 ZA463, the oldest remaining Tornado, over RAF Marham during the disbandment parade of No. IX Squadron and No. 31 Squadron. The Tornado GR4 was officially retired from RAF service on 1 April 2019, the 101st anniversary of the force. Post-retirement, five Tornados returned to RAF Honington via road for the Complex Air Ground Environment, which simulates a Tornado flight line for training purposes.

Royal Saudi Air Force

On 25 September 1985, the UK and Saudi Arabia signed the Al Yamamah I contract including, amongst other things, the sale of 48 IDS and 24 ADV model Tornados. The first flight of a Royal Saudi Air Force Tornado IDS was on 26 March 1986, and the first Saudi ADV was delivered on 9 February 1989. Saudi Tornados undertook operations during the Gulf War. In June 1993 the Al Yamamah II contract was signed, the main element of which was 48 additional IDSs.
Following experience with both the Tornado and the McDonnell Douglas F-15E Strike Eagle, the RSAF discontinued low-level mission training in the F-15E in light of the Tornado's superior low-altitude flight performance. In addition, 10 of the Saudi Tornados were outfitted with equipment for performing reconnaissance missions. The 22 Tornado ADVs were replaced by the Eurofighter Typhoon; the retired aircraft were being purchased back by the UK.
By 2007, both the Sea Eagle anti-ship missile and the ALARM anti-radiation missile that previously equipped the RSAF's Tornados had been withdrawn from service. As of 2010, Saudi Arabia has signed several contracts for new weapon systems to be fitted to their Tornado and Typhoon fleets, such as the short range air-to-air IRIS-T missile, and the Brimstone and Storm Shadow missiles.
In September 2006, the Saudi government signed a contract worth £2.5 billion with BAE Systems to upgrade up to 80 RSAF Tornado IDS aircraft to keep them in service until 2020. The first RSAF Tornado was returned to BAE Systems Warton in December 2006 for upgrade under the "Tornado Sustainment Programme" to "equip the IDS fleet with a range of new precision-guided weapons and enhanced targeting equipment, in many cases common with those systems already fielded by the UK's Tornado GR4s." In December 2007, the first RSAF aircraft to complete modernisation was returned to Saudi Arabia.
Starting from the first week of November 2009, Saudi Air Force Tornados, along with Saudi F-15s performed air raids during the Shia insurgency in north Yemen. It was the first time since Operation Desert Storm in 1991 that the Royal Saudi Air Force participated in a military operation over hostile territory. Saudi Air Force Tornados are playing a central role in Saudi-led bombing campaign in Yemen.
On 7 January 2018, Houthi fighters claimed to have shot down a Saudi warplane which was conducting air-raids over northern Yemen. According to Saudi reports, the downed aircraft was a Tornado of the Royal Saudi Air Force which was on a combat mission in the skies over Saada province in northern Yemen. Saudi reports said that it was lost for 'technical reasons' and that both crew were rescued.
In the night of 14 February 2020, a Saudi Tornado was shot down during close air support mission in support of Saudi allied Yemeni forces in the Yemeni Al Jouf governorate by Houthis. On the day after, the Saudi command confirmed the loss of a Tornado, while video evidence was released showing the downing using a two-stage surface to air missile. Both pilots ejected and were captured by Houthis.

Variants

Tornado IDS

;Tornado GR1
RAF IDS variants were initially designated the Tornado GR1 with later modified aircraft designated Tornado GR1A, Tornado GR1B, Tornado GR4 and Tornado GR4A. The first of 228 GR1s was delivered on 5 June 1979, and the type entered service in the early 1980s.
;Tornado GR1B
The Tornado GR1B was a specialised anti-shipping variant of the GR1, replacing the Blackburn Buccaneer. 26 aircraft were converted and were based at RAF Lossiemouth, Scotland. Each aircraft was equipped to carry up to four Sea Eagle anti-ship missiles. At first the GR1B lacked the radar capability to track shipping, instead relying on the missile's seeker for target acquisition, later updates allowed target data to be fed from aircraft to missile.
;Tornado GR4
The UK Ministry of Defence began studies for a GR1 Mid-Life Update in 1984. The update to GR4 standard, approved in 1994, would improve capability in the medium-altitude role based on lessons learned from the GR1's performance in the 1991 Gulf War. British Aerospace upgraded 142 Tornado GR1s to GR4 standard, beginning in 1996 and finished in 2003. 59 RAF aircraft later received the CUSP avionics package which integrated the Paveway IV bomb and installed a new secure communications module from Cassidian in Phase A, followed by the Tactical Information Exchange datalink from General Dynamics in Phase B.
;Tornado GR1A/GR4A
The GR1A is the reconnaissance variant operated by the RAF and RSAF, fitted with the TIRRS, replacing the cannon. The RAF ordered 30 GR1As, 14 as GR1 rebuilds and 16 as new-builds. When the Tornado GR1s were upgraded to become GR4s, GR1A aircraft were upgraded to GR4A standard. The switch from low-level operations to medium/high-level operations means that the internal TIRRS was no longer used. As the GR4A's internal sensors are no longer essential, the RAF's Tactical Reconnaissance Wing operate both GR4A and GR4 aircraft.

Tornado ECR

Operated by Germany and Italy, the ECR is a Tornado variant devoted to Suppression of Enemy Air Defenses missions. It was first delivered on 21 May 1990. The ECR has sensors to detect radar usage and is equipped with anti-radiation AGM-88 HARM missiles. The Luftwaffe's 35 ECRs were delivered new, while Italy received 16 converted IDSs. Italian Tornado ECRs differ from the Luftwaffe aircraft as they lack built-in reconnaissance capability and use RecceLite reconnaissance pods. Further, only Luftwaffe ECRs are equipped with RB199 Mk.105 engine, which has a higher thrust rating. The German ECRs do not carry a cannon. The RAF used the IDS version in the SEAD role instead of the ECR and also modified several of its Tornado F.3s to undertake the mission.

Tornado ADV

The Tornado ADV was an interceptor variant of the Tornado, developed for the RAF and also operated by Saudi Arabia and Italy. The ADV had inferior agility to fighters like the McDonnell Douglas F-15 Eagle, but it was not intended as a dogfighter, but rather it was a long-endurance interceptor to counter the threat from Cold War bombers. Although the ADV had 80% parts commonality with the Tornado IDS, the ADV had greater acceleration, improved RB199 Mk.104 engines, a stretched body, greater fuel capacity, the AI.24 Foxhunter radar, and software changes. It had only one cannon to accommodate a retractable inflight refuelling probe.

Operators

;
;Austria
;Bulgaria
;Germany
;Italy
;Netherlands
;Saudi Arabia
;Spain
;United Kingdom
;United States

Popular culture

Citations