Paracompact space


In mathematics, a paracompact space is a topological space in which every open cover has an open refinement that is locally finite. These spaces were introduced by. Every compact space is paracompact. Every paracompact Hausdorff space is normal, and a Hausdorff space is paracompact if and only if it admits partitions of unity subordinate to any open cover. Sometimes paracompact spaces are defined so as to always be Hausdorff.
Every closed subspace of a paracompact space is paracompact. While compact subsets of Hausdorff spaces are always closed, this is not true for paracompact subsets. A space such that every subspace of it is a paracompact space is called hereditarily paracompact. This is equivalent to requiring that every open subspace be paracompact.
Tychonoff's theorem does not generalize to paracompact spaces in that the product of paracompact spaces need not be paracompact. However, the product of a paracompact space and a compact space is always paracompact.
Every metric space is paracompact. A topological space is metrizable if and only if it is a paracompact and locally metrizable Hausdorff space.

Definition

A cover of a set is a collection of subsets of whose union contains. In symbols, if is an indexed family of subsets of, then is a cover of if
A cover of a topological space is open if all its members are open sets. A refinement of a cover of a space is a new cover of the same space such that every set in the new cover is a subset of some set in the old cover. In symbols, the cover is a refinement of the cover if and only if, for any in, there exists some in such that.
An open cover of a space is locally finite if every point of the space has a neighborhood that intersects only finitely many sets in the cover. In symbols, is locally finite if and only if, for any in, there exists some neighbourhood of such that the set
is finite. A topological space is now said to be paracompact if every open cover has a locally finite open refinement.

Examples

Some examples of spaces that are not paracompact include:
Paracompactness is weakly hereditary, i.e. every closed subspace of a paracompact space is paracompact. This can be extended to F-sigma subspaces as well.
Although a product of paracompact spaces need not be paracompact, the following are true:
Both these results can be proved by the tube lemma which is used in the proof that a product of finitely many compact spaces is compact.

Paracompact Hausdorff spaces

Paracompact spaces are sometimes required to also be Hausdorff to extend their properties.
The most important feature of paracompact Hausdorff spaces is that they are normal and admit partitions of unity subordinate to any open cover. This means the following: if X is a paracompact Hausdorff space with a given open cover, then there exists a collection of continuous functions on X with values in the unit interval such that:
In fact, a T1 space is Hausdorff and paracompact if and only if it admits partitions of unity subordinate to any open cover. This property is sometimes used to define paracompact spaces.
Partitions of unity are useful because they often allow one to extend local constructions to the whole space. For instance, the integral of differential forms on paracompact manifolds is first defined locally, and this definition is then extended to the whole space via a partition of unity.

Proof that paracompact Hausdorff spaces admit partitions of unity

A Hausdorff space is paracompact if and only if it every open cover admits a subordinate partition of unity. The if direction is straightforward. Now for the only if direction, we do this in a few stages.

Relationship with compactness

There is a similarity between the definitions of compactness and paracompactness:
For paracompactness, "subcover" is replaced by "open refinement" and "finite" by is replaced by "locally finite". Both of these changes are significant: if we take the definition of paracompact and change "open refinement" back to "subcover", or "locally finite" back to "finite", we end up with the compact spaces in both cases.
Paracompactness has little to do with the notion of compactness, but rather more to do with breaking up topological space entities into manageable pieces.

Comparison of properties with compactness

Paracompactness is similar to compactness in the following respects:
It is different in these respects:
There are several variations of the notion of paracompactness. To define them, we first need to extend the list of terms above:
A topological space is:
The adverb "countably" can be added to any of the adjectives "paracompact", "metacompact", and "fully normal" to make the requirement apply only to countable open covers.
Every paracompact space is metacompact, and every metacompact space is orthocompact.

Definition of relevant terms for the variations

As the name implies, a fully normal space is normal. Every fully T4 space is paracompact. In fact, for Hausdorff spaces, paracompactness and full normality are equivalent. Thus, a fully T4 space is the same thing as a paracompact Hausdorff space.
Without the Hausdorff property, paracompact spaces are not necessarily fully normal. Any compact space that is not regular provides an example.
As an historical note: fully normal spaces were defined before paracompact spaces.
The proof that all metrizable spaces are fully normal is easy. When it was proved by A.H. Stone that for Hausdorff spaces fully normal and paracompact are equivalent, he implicitly proved that all metrizable spaces are paracompact. Later M.E. Rudin gave a direct proof of the latter fact.