Quasigroup


In mathematics, especially in abstract algebra, a quasigroup is an algebraic structure resembling a group in the sense that "division" is always possible. Quasigroups differ from groups mainly in that they are not necessarily associative.
A quasigroup with an identity element is called a loop.

Definitions

There are at least two structurally equivalent formal definitions of quasigroup. One defines a quasigroup as a set with one binary operation, and the other, from [|universal algebra], defines a quasigroup as having three primitive operations. The homomorphic image of a quasigroup defined with a single binary operation, however, need not be a quasigroup. We begin with the first definition.

Algebra

A quasigroup is a non-empty set Q with a binary operation ∗, obeying the Latin square property. This states that, for each a and b in Q, there exist unique elements x and y in Q such that both
hold. The uniqueness requirement can be replaced by the requirement that the magma be cancellative.
The unique solutions to these equations are written and. The operations '\' and '/' are called, respectively, left and right division.
The empty set equipped with the empty binary operation satisfies this definition of a quasigroup. Some authors accept the empty quasigroup but others explicitly exclude it.

Universal algebra

Given some algebraic structure, an identity is an equation in which all variables are tacitly universally quantified, and in which all operations are among the primitive operations proper to the structure. Algebraic structures axiomatized solely by identities are called varieties. Many standard results in universal algebra hold only for varieties. Quasigroups are varieties if left and right division are taken as primitive.
A quasigroup is a type algebra satisfying the identities:
In other words: Multiplication and division in either order, one after the other, on the same side by the same element, have no net effect.
Hence if is a quasigroup according to the first definition, then is the same quasigroup in the sense of universal algebra. And vice versa: if is a quasigroup according to the sense of universal algebra, then is a quasigroup according to the first definition.

Loops

A loop is a quasigroup with an identity element; that is, an element, e, such that
It follows that the identity element, e, is unique, and that every element of Q has unique left and right inverses.
A quasigroup with an idempotent element is called a pique ; this is a weaker notion than a loop but common nonetheless because, for example, given an abelian group,, taking its subtraction operation as quasigroup multiplication yields a pique with the group identity turned into a "pointed idempotent".
A loop that is associative is a group. A group can have a non-associative pique isotope, but it cannot have a nonassociative loop isotope.
There are weaker associativity properties that have been given special names.
For instance, a Bol loop is a loop that satisfies either:
or else
A loop that is both a left and right Bol loop is a Moufang loop. This is equivalent to any one of the following single Moufang identities holding for all x, y, z:

Symmetries

Smith names the following important properties and subclasses:

Semisymmetry

A quasigroup is semisymmetric if the following equivalent identities hold:
Although this class may seem special, every quasigroup Q induces a semisymmetric quasigroup QΔ on the direct product cube Q3 via the following operation:
where "//" and "\\" are the conjugate division operations given by and.

Triality

Total symmetry

A narrower class that is a totally symmetric quasigroup in which all conjugates coincide as one operation:. Another way to define totally symmetric quasigroup is as a semisymmetric quasigroup which also is commutative, i.e..
Idempotent total symmetric quasigroups are precisely Steiner triples, so such a quasigroup is also called a Steiner quasigroup, and sometimes the latter is even abbreviated as squag; the term sloop is defined similarly for a Steiner quasigroup that is also a loop. Without idempotency, total symmetric quasigroups correspond to the geometric notion of extended Steiner triple, also called Generalized Elliptic Cubic Curve.

Total antisymmetry

A quasigroup is called totally anti-symmetric if for all, both of the following implications hold:
  1. y = ∗ x implies that x = y
  2. xy = yx implies that x = y.
It is called weakly totally anti-symmetric if only the first implication holds.
This property is required, for example, in the Damm algorithm.

Examples

Quasigroups have the cancellation property: if, then. This follows from the uniqueness of left division of ab or ac by a. Similarly, if, then.

Multiplication operators

The definition of a quasigroup can be treated as conditions on the left and right multiplication operators, defined by
The definition says that both mappings are bijections from Q to itself. A magma Q is a quasigroup precisely when all these operators, for every x in Q, are bijective. The inverse mappings are left and right division, that is,
In this notation the identities among the quasigroup's multiplication and division operations are
where 1 denotes the identity mapping on Q.

Latin squares

The multiplication table of a finite quasigroup is a Latin square: an table filled with n different symbols in such a way that each symbol occurs exactly once in each row and exactly once in each column.
Conversely, every Latin square can be taken as the multiplication table of a quasigroup in many ways: the border row and the border column can each be any permutation of the elements. See small Latin squares and quasigroups.

Infinite quasigroups

For a countably infinite quasigroup Q, it is possible to imagine an infinite array in which every row and every column corresponds to some element q of Q, and where the element a*b is in the row corresponding to a and the column responding to b. In this situation too, the Latin Square property says that each row and each column of the infinite array will contain every possible value precisely once.
For an uncountably infinite quasigroup, such as the group of non-zero real numbers under multiplication, the Latin square property still holds, although the name is somewhat unsatisfactory, as it is not possible to produce the array of combinations to which the above idea of an infinite array extends since the real numbers cannot all be written in a sequence.

Inverse properties

Every loop element has a unique left and right inverse given by
A loop is said to have inverses if for all x. In this case the inverse element is usually denoted by.
There are some stronger notions of inverses in loops which are often useful:
A loop has the inverse property if it has both the left and right inverse properties. Inverse property loops also have the antiautomorphic and weak inverse properties. In fact, any loop which satisfies any two of the above four identities has the inverse property and therefore satisfies all four.
Any loop which satisfies the left, right, or antiautomorphic inverse properties automatically has two-sided inverses.

Morphisms

A quasigroup or loop homomorphism is a map between two quasigroups such that. Quasigroup homomorphisms necessarily preserve left and right division, as well as identity elements.

Homotopy and isotopy

Let Q and P be quasigroups. A quasigroup homotopy from Q to P is a triple of maps from Q to P such that
for all x, y in Q. A quasigroup homomorphism is just a homotopy for which the three maps are equal.
An isotopy is a homotopy for which each of the three maps is a bijection. Two quasigroups are isotopic if there is an isotopy between them. In terms of Latin squares, an isotopy is given by a permutation of rows α, a permutation of columns β, and a permutation on the underlying element set γ.
An autotopy is an isotopy from a quasigroup to itself. The set of all autotopies of a quasigroup form a group with the automorphism group as a subgroup.
Every quasigroup is isotopic to a loop. If a loop is isotopic to a group, then it is isomorphic to that group and thus is itself a group. However, a quasigroup which is isotopic to a group need not be a group. For example, the quasigroup on R with multiplication given by is isotopic to the additive group, but is not itself a group. Every medial quasigroup is isotopic to an abelian group by the Bruck–Toyoda theorem.

Conjugation (parastrophe)

Left and right division are examples of forming a quasigroup by permuting the variables in the defining equation. From the original operation ∗ we can form five new operations: , / and \, and their opposites. That makes a total of six quasigroup operations, which are called the conjugates or parastrophes of ∗. Any two of these operations are said to be "conjugate" or "parastrophic" to each other.

Isostrophe (paratopy)

If the set Q has two quasigroup operations, ∗ and ·, and one of them is isotopic to a conjugate of the other, the operations are said to be isostrophic to each other. There are also many other names for this relation of "isostrophe", e.g., paratopy.

Generalizations

Polyadic or multiary quasigroups

An n-ary quasigroup is a set with an n-ary operation, with, such that the equation has a unique solution for any one variable if all the other n variables are specified arbitrarily. Polyadic or multiary means n-ary for some nonnegative integer n.
A 0-ary, or nullary, quasigroup is just a constant element of Q. A 1-ary, or unary, quasigroup is a bijection of Q to itself. A binary, or 2-ary, quasigroup is an ordinary quasigroup.
An example of a multiary quasigroup is an iterated group operation, ; it is not necessary to use parentheses to specify the order of operations because the group is associative. One can also form a multiary quasigroup by carrying out any sequence of the same or different group or quasigroup operations, if the order of operations is specified.
There exist multiary quasigroups that cannot be represented in any of these ways. An n-ary quasigroup is irreducible if its operation cannot be factored into the composition of two operations in the following way:
where and. Finite irreducible n-ary quasigroups exist for all ; see Akivis and Goldberg for details.
An n-ary quasigroup with an n-ary version of associativity is called an n-ary group.

Right- and left-quasigroups

A right-quasigroup is a type algebra satisfying both identities:
y = ∗ x;
y = / x.
Similarly, a left-quasigroup is a type algebra satisfying both identities:
y = x ∗ ;
y = x \.

Number of small quasigroups and loops

The number of isomorphism classes of small quasigroups and loops is given here:
OrderNumber of quasigroupsNumber of loops
010
111
211
351
4352
51,4116
61,130,531109
712,198,455,83523,746
82,697,818,331,680,661106,228,849
915,224,734,061,438,247,321,4979,365,022,303,540
102,750,892,211,809,150,446,995,735,533,51320,890,436,195,945,769,617
1119,464,657,391,668,924,966,791,023,043,937,578,299,0251,478,157,455,158,044,452,849,321,016