Quinoa


Quinoa is a flowering plant in the amaranth family. It is a herbaceous annual plant grown as a crop primarily for its edible seeds; the seeds are rich in protein, dietary fiber, B vitamins, and dietary minerals in amounts greater than in many grains. Quinoa is not a grass, but rather a pseudocereal botanically related to spinach and amaranth, and originated in the Andean region of northwestern South America. It was first used to feed livestock 5.2–7.0 thousand years ago, and for human consumption 3–4 thousand years ago in the Lake Titicaca basin of Peru and Bolivia.
Today, almost all production in the Andean region is done by small farms and associations. Its cultivation has spread to more than 70 countries, including Kenya, India, the United States, and several European countries. As a result of increased popularity and consumption in North America, Europe, and Australasia, quinoa crop prices tripled between 2006 and 2013.

Botany

Description

Chenopodium quinoa is a dicotyledonous annual plant, usually about high. It has broad, generally powdery, hairy, lobed leaves, normally arranged alternately. The woody central stem is branched or unbranched depending on the variety and may be green, red or purple. The flowering panicles arise from the top of the plant or from leaf axils along the stem. Each panicle has a central axis from which a secondary axis emerges either with flowers or bearing a tertiary axis carrying the flowers. These are small, incomplete, sessile flowers of the same colour as the sepals, and both pistillate and perfect forms occur. Pistillate flowers are generally located at the proximal end of the glomeruli and the perfect ones at the distal end of it. A perfect flower has five sepals, five anthers and a superior ovary, from which two to three stigmatic branches emerge.
The green hypogynous flowers have a simple perianth and are generally self-fertilizing though but cross-pollination occurs. Furthermore, in the natural environment, betalains serve to attract animals to generate a greater rate of pollination and ensure, or improve, seed dissemination. The fruits are about in diameter and of various colors — from white to red or black, depending on the cultivar.
In regards to the “newly” developed salinity resistance of C. quinoa, some studies have concluded that accumulation of organic osmolytes plays a dual role for the species. They provide osmotic adjustment, in addition to protection against oxidative stress of the photosynthetic structures in developing leaves. Studies also suggested that reduction in stomatal density in reaction to salinity levels represents an essential instrument of defence to optimize water use efficiency under the given conditions to which it may be exposed.

Natural distribution

Chenopodium quinoa is believed to have been domesticated in the Peruvian Andes from wild or weed populations of the same species. There are non-cultivated quinoa plants that grow in the area it is cultivated; these may either be related to wild predecessors, or they could be descendants of cultivated plants.

Saponins and oxalic acid

In their natural state, the seeds have a coating that contains bitter-tasting saponins, making them unpalatable. Most of the grain sold commercially has been processed to remove this coating. This bitterness has beneficial effects during cultivation, as it deters birds and therefore, the plant requires minimal protection. The genetic control of bitterness involves quantitative inheritance. Although lowering the saponin content through selective breeding to produce sweeter, more palatable varieties is complicated by ≈10% cross-pollination, it is a major goal of quinoa breeding programs, which may include genetic engineering.
The toxicity category rating of the saponins in quinoa treats them as mild eye and respiratory irritants and as a low gastrointestinal irritant. In South America, the saponins have many uses, including their use as a detergent for clothing and washing, and as a folk medicine antiseptic for skin injuries.
Additionally, high levels of oxalic acid are in the leaves and stems of all species of the genus Chenopodium, and in the related genera of the family Amaranthaceae. The risks associated with quinoa are minimal, provided those parts are properly prepared and the leaves are not eaten to excess.

Nutritional value

Raw, uncooked quinoa is 13% water, 64% carbohydrates, 14% protein, and 6% fat. Nutritional evaluations indicate that a serving of raw quinoa seeds is a rich source of protein, dietary fiber, several B vitamins, including 46% DV for folate, and the dietary minerals magnesium, phosphorus, and manganese.
After cooking, which is the typical preparation for eating the seeds, quinoa is 72% water, 21% carbohydrates, 4% protein, and 2% fat. In a serving, cooked quinoa provides of food energy and is a rich source of manganese and phosphorus, and a moderate source of dietary fiber, folate, and the dietary minerals, iron, zinc, and magnesium.
Quinoa is gluten-free. Because of the high concentration of protein, ease of use, versatility in preparation, and potential for increased yields in controlled environments, it has been selected as an experimental crop in NASA's Controlled Ecological Life Support System for long-duration human occupied space flights.

Cultivation

Climate requirements

The plant's growth is highly variable due to the number of different subspecies, varieties and landraces. However, it is generally undemanding and altitude-hardy; it is grown from coastal regions to over in the Andes near the equator, with most of the cultivars being grown between and. Depending on the variety, optimal growing conditions are in cool climates with temperatures that vary between during the night to near during the day. Some cultivars can withstand lower temperatures without damage. Light frosts normally do not affect the plants at any stage of development, except during flowering. Midsummer frosts during flowering, a frequent occurrence in the Andes, lead to sterilization of the pollen. Rainfall requirements are highly variable between the different cultivars, ranging from during the growing season. Growth is optimal with well-distributed rainfall during early growth and no rain during seed maturation and harvesting.

United States

Quinoa has been cultivated in the United States, primarily in the high elevation San Luis Valley of Colorado where it was introduced in 1983. In this high-altitude desert valley, maximum summer temperatures rarely exceed and night temperatures are about. In the 2010s, experimental production was attempted in the Palouse region of Eastern Washington, and farmers in Western Washington began producing the crop. The Washington State University Skagit River Valley research facility near Mount Vernon grew thousands of its own experimental varieties. According to a research agronomist, the Puget Sound region's climate is similar to that of coastal Chile where the crop has been grown for centuries. Due to the short growing season, North American cultivation requires short-maturity varieties, typically of Bolivian origin. Quinoa is planted in Idaho where a variety developed and bred specifically for the high-altitude Snake River Plain is the largest planted variety in North America.

Europe

Several countries within Europe have successfully grown quinoa on a commercial scale.

Sowing

Quinoa plants do best in sandy, well-drained soils with a low nutrient content, moderate salinity, and a soil pH of 6 to 8.5. The seedbed must be well prepared and drained to avoid waterlogging.

Soil and pests

Quinoa has gained attention for its adaptability to contrasting environments such as saline soils, nutrient-poor soils and drought stressed marginal agroecosystems. Yields are maximised when of nitrogen is available. The addition of phosphorus does not improve yield. In eastern North America, it is susceptible to a leaf miner that may reduce crop success.

Genetics

The genome of quinoa was sequenced in 2017 by researchers at King Abdullah University of Science and Technology in Saudi Arabia. Through traditional selective breeding and, potentially, genetic engineering, the plant is being modified to have higher crop yield, improved tolerance to heat and biotic stress, and greater sweetness through saponin inhibition.

Harvesting

Traditionally, quinoa grain is harvested by hand, and only rarely by machine, because the extreme variability of the maturity period of most Quinoa cultivars complicates mechanization. Harvest needs to be precisely timed to avoid high seed losses from shattering, and different panicles on the same plant mature at different times. The crop yield in the Andean region is comparable to wheat yields. In the United States, varieties have been selected for uniformity of maturity and are mechanically harvested using conventional small grain combines.

Processing

The plants are allowed to stand until the stalks and seeds have dried out and the grain has reached a moisture content below 10%.
Handling involves threshing the seedheads from the chaff and winnowing the seed to remove the husk. Before storage, the seeds need to be dried in order to avoid germination. Dry seeds can be stored raw until being washed or mechanically processed to remove the pericarp to eliminate the bitter layer containing saponins. The seeds must be dried again before being stored and sold in stores.

Production

In 2018, world production of quinoa was 158,920 tonnes, led by Peru and Bolivia with 99% of the total combined.

Price

Since the early 21st century when quinoa became more commonly consumed in North America, Europe, and Australasia where it was not typically grown, the crop value increased. Between 2006 and 2013, quinoa crop prices tripled. In 2011, the average price was US $3,115 per tonne with some varieties selling as high as $8,000 per tonne. This compares with wheat prices of about US $340 per tonne, making wheat about 10% of the value of quinoa. The resulting effect on traditional production regions in Peru and Bolivia also influenced new commercial quinoa production elsewhere in the world, such as the United States. By 2013, quinoa was being cultivated in some 70 countries.

Effects on growers of rising demand

Rising quinoa prices over the period 2006 to 2017 may have reduced affordability of traditional consumers to consume quinoa. However, a 2016 study using Peru's Encuesta Nacional de Hogares found that during 2004–2013 rising quinoa prices led to net economic benefits for producers, and other commentary has suggested similar conclusions, including for women specifically. It has also been suggested that as quinoa producers rise above subsistence-level income, they switch their own consumption to Western processed foods which are often less healthy than a traditional, quinoa-based diet, whether because quinoa is held to be worth too much to keep for oneself and one's family, or because processed foods have higher status despite their poorer nutritional value. Efforts are being made in some areas to distribute quinoa more widely and ensure that farming and poorer populations have access to it and have an understanding of its nutritional importance, including use in free school breakfasts and government provisions distributed to pregnant and nursing women in need.
In terms of wider social consequences, research on traditional producers in Bolivia has emphasised a complex picture. The degree to which individual producers benefit from the global quinoa boom depends on its mode of production, for example through producer associations and co-operatives such as the Asociación Nacional de Productores de Quinua, contracting through vertically-integrated private firms, or wage labour. State regulation and enforcement is also important. It has promoted a shift to cash-cropping among some farmers and a shift toward subsistence production among others, while enabling many urban refugees to return to working the land, outcomes with complex and varied social effects.
The growth of quinoa consumption in nonindigenous regions has raised concerns over food security, such as unsustainably intensive farming of the crop, expansion of farming into ecologically fragile ecosystems, threatening both the sustainability of producer agriculture and the biodiversity of quinoa.
World demand for quinoa is sometimes presented in the media particularly as being caused by rising veganism, but academic commentary has noted that promoting meat consumption as an ethical alternative to eating quinoa is generally inconsistent with achieving a sustainable world food supply.

Culture

United Nations recognition

The United Nations General Assembly declared 2013 as the "International Year of Quinoa" in recognition of the ancestral practices of the Andean people, who have preserved it as a food for present and future generations, through knowledge and practices of living in harmony with nature. The objective was to draw the world’s attention to the role that quinoa could play in providing food security, nutrition and poverty eradication in support of achieving Millennium Development Goals. Some academic commentary emphasised, however, that quinoa production could have ecological and social drawbacks in its native regions, and that these problems needed to be tackled.

Kosher certification

Quinoa is used in the Jewish community as a substitute for the leavened grains that are forbidden during the Passover holiday. Several kosher certification organizations refuse to certify it as being kosher for Passover, citing reasons including its resemblance to prohibited grains or fear of cross-contamination of the product from nearby fields of prohibited grain or during packaging. However, in December 2013 the Orthodox Union, the world's largest kosher certification agency, announced it would begin certifying quinoa as kosher for Passover.

History

Quinoa is an allotetraploid plant for what, according to the studies done in 1979, it has as the presumed ancestor either Chenopodium berlandieri, from North America, or the Andean species Chenopodium hircinum, although more recent studies, in 2011, even suggest Old World relatives. On the other hand, morphological features relate C. quinoa of the Andes and Chenopodium nuttalliae of Mexico. Some studies have suggested that both species may have been derived from the same wild type. A weedy quinoa, C. quinoa var. melanospermum, is known from South America, but no equivalent closely related to C. nutalliae has been reported from Mexico so far.
In any case, over the last 5,000 years the biogeography of Chenopodium quinua has changed greatly, mainly by human influence, convenience and preference. It has changed not only in the area of distribution, but also in regards to the environment this plant used to be able to flourish in, in contrast to the habitats on which it is able to do it now. In a process started by a number of South American indigenous cultures, people have been adapting quinoa to salinity and other forms of stress over the last 3,000 years. Particularly for the high variety of Chilean landraces, in addition to how the plant has adapted to different latitudes, this crop is now potentially cultivable almost anywhere in the world, including Europe, Asia and Africa.
When Amaranthaceae became abundant in Lake Pacucha, Peru, the lake was fresh, and the lack of it during the droughts strongly indicates how the taxa was not saltmarsh. Based on the pollen associated with soil manipulation, this is an area of the Andes were domestication of C. quinoa became popular, although it was not the only one. It was domesticated in various geographical zones. With this, morphological adaptations began to happen until having five ecotypes today. Quinoa's genetic diversity illustrates that it was and is a vital crop. In fact, during the last interglacial lowstands, pollen accumulations from Lake Titicaca, located between Peru and Bolivia, were dominated by Amaranthaceae.
Nevertheless, studies regarding genetic diversity suggest that it may have passed through at least three bottleneck genetic events, with a possible fourth expected: