RNA polymerase
In molecular biology, RNA polymerase, is an enzyme that synthesizes RNA from a DNA template.
Using the enzyme helicase, RNAP locally opens the double-stranded DNA so that one strand of the exposed nucleotides can be used as a template for the synthesis of RNA, a process called transcription. A transcription factor and its associated transcription mediator complex must be attached to a DNA binding site called a promoter region before RNAP can initiate the DNA unwinding at that position. RNAP not only initiates RNA transcription, it also guides the nucleotides into position, facilitates attachment and elongation, has intrinsic proofreading and replacement capabilities, and termination recognition capability. In eukaryotes, RNAP can build chains as long as 2.4 million nucleotides.
RNAP produces RNA that, functionally, is either for protein coding, i.e. messenger RNA ; or non-coding. At least four functional types of RNA genes exist:
- transfer RNA — transfers specific amino acids to growing polypeptide chains at the ribosomal site of protein synthesis during translation;
- ribosomal RNA — incorporates into ribosomes;
- micro RNA — regulates gene activity; and,
- catalytic RNA — functions as an enzymatically active RNA molecule.
Bacteria and archaea only have one RNA polymerase. Eukaryotes have multiple types of nuclear RNAP, each responsible for synthesis of a distinct subset of RNA:
- RNA polymerase I synthesizes a pre-rRNA 45S, which matures and will form the major RNA sections of the ribosome.
- RNA polymerase II synthesizes precursors of mRNAs and most snRNA and microRNAs.
- RNA polymerase III synthesizes tRNAs, rRNA 5S and other small RNAs found in the nucleus and cytosol.
- RNA polymerase IV and V found in plants are less understood; they make siRNA. In addition to the ssRNAPs, chloroplasts also encode and use a bacteria-like RNAP.
Structure
In most prokaryotes, a single RNA polymerase species transcribes all types of RNA. RNA polymerase "core" from E. coli consists of five subunits: two alpha subunits of 36 kDa, a beta subunit of 150 kDa, a beta prime subunit of 155 kDa, and a small omega subunit. A sigma factor binds to the core, forming the holoenzyme. After transcription starts, the factor can unbind and let the core enzyme proceed with its work. The core RNA polymerase complex forms a "crab claw" or "clamp-jaw" structure with an internal channel running along the full length. Eukaryotic and archaeal RNA polymerases have a similar core structure and work in a similar manner, although they have many extra subunits.
All RNAPs contain metal cofactors, in particular zinc and magnesium cations which aid in the transcription process.
Function
Control of the process of gene transcription affects patterns of gene expression and, thereby, allows a cell to adapt to a changing environment, perform specialized roles within an organism, and maintain basic metabolic processes necessary for survival. Therefore, it is hardly surprising that the activity of RNAP is long, complex, and highly regulated. In Escherichia coli bacteria, more than 100 transcription factors have been identified, which modify the activity of RNAP.RNAP can initiate transcription at specific DNA sequences known as promoters. It then produces an RNA chain, which is complementary to the template DNA strand. The process of adding nucleotides to the RNA strand is known as elongation; in eukaryotes, RNAP can build chains as long as 2.4 million nucleotides. RNAP will preferentially release its RNA transcript at specific DNA sequences encoded at the end of genes, which are known as terminators.
Products of RNAP include:
- Messenger RNA —template for the synthesis of proteins by ribosomes.
- Non-coding RNA or "RNA genes"—a broad class of genes that encode RNA that is not translated into protein. The most prominent examples of RNA genes are transfer RNA and ribosomal RNA, both of which are involved in the process of translation. However, since the late 1990s, many new RNA genes have been found, and thus RNA genes may play a much more significant role than previously thought.
- *Transfer RNA —transfers specific amino acids to growing polypeptide chains at the ribosomal site of protein synthesis during translation
- *Ribosomal RNA —a component of ribosomes
- *Micro RNA—regulates gene activity
- *Catalytic RNA —enzymatically active RNA molecules
Action
Initiation
RNA polymerase binding in bacteria involves the sigma factor recognizing the core promoter region containing the −35 and −10 elements and also, at some promoters, the α subunit C-terminal domain recognizing promoter upstream elements. There are multiple interchangeable sigma factors, each of which recognizes a distinct set of promoters. For example, in E. coli, σ70 is expressed under normal conditions and recognizes promoters for genes required under normal conditions, while σ32 recognizes promoters for genes required at high temperatures. In archaea and eukaryotes, the functions of the bacterial general transcription factor sigma are performed by multiple general transcription factors that work together. The RNA polymerase-promoter closed complex is usually referred to as the "transcription preinitiation complex."After binding to the DNA, the RNA polymerase switches from a closed complex to an open complex. This change involves the separation of the DNA strands to form an unwound section of DNA of approximately 13 bp, referred to as the "transcription bubble". Supercoiling plays an important part in polymerase activity because of the unwinding and rewinding of DNA. Because regions of DNA in front of RNAP are unwound, there are compensatory positive supercoils. Regions behind RNAP are rewound and negative supercoils are present.
Promoter escape
RNA polymerase then starts to synthesize the initial DNA-RNA heteroduplex, with ribonucleotides base-paired to the template DNA strand according to Watson-Crick base-pairing interactions. As noted above, RNA polymerase makes contacts with the promoter region. However these stabilizing contacts inhibit the enzyme's ability to access DNA further downstream and thus the synthesis of the full-length product. In order to continue RNA synthesis, RNA polymerase must escape the promoter. It must maintain promoter contacts while unwinding more downstream DNA for synthesis, "scrunching" more downstream DNA into the initiation complex. During the promoter escape transition, RNA polymerase is considered a "stressed intermediate." Thermodynamically the stress accumulates from the DNA-unwinding and DNA-compaction activities. Once the DNA-RNA heteroduplex is long enough, RNA polymerase releases its upstream contacts and effectively achieves the promoter escape transition into the elongation phase. The heteroduplex at the active center stabilizes the elongation complex.However, promoter escape is not the only outcome. RNA polymerase can also relieve the stress by releasing its downstream contacts, arresting transcription. The paused transcribing complex has two options: release the nascent transcript and begin anew at the promoter or reestablish a new 3'OH on the nascent transcript at the active site via RNA polymerase's catalytic activity and recommence DNA scrunching to achieve promoter escape. Abortive initiation, the unproductive cycling of RNA polymerase before the promoter escape transition, results in short RNA fragments of around 9 bp in a process known as abortive transcription. The extent of abortive initiation depends on the presence of transcription factors and the strength of the promoter contacts.
Elongation
The 17-bp transcriptional complex has an 8-bp DNA-RNA hybrid, that is, 8 base-pairs involve the RNA transcript bound to the DNA template strand. As transcription progresses, ribonucleotides are added to the 3' end of the RNA transcript and the RNAP complex moves along the DNA. The characteristic elongation rates in prokaryotes and eukaryotes are about 10–100 nts/sec.Aspartyl residues in the RNAP will hold on to Mg2+ ions, which will, in turn, coordinate the phosphates of the ribonucleotides. The first Mg2+ will hold on to the α-phosphate of the NTP to be added. This allows the nucleophilic attack of the 3'OH from the RNA transcript, adding another NTP to the chain. The second Mg2+ will hold on to the pyrophosphate of the NTP. The overall reaction equation is:
Fidelity
Unlike the proofreading mechanisms of DNA polymerase those of RNAP have only recently been investigated. Proofreading begins with separation of the mis-incorporated nucleotide from the DNA template. This pauses transcription. The polymerase then backtracks by one position and cleaves the dinucleotide that contains the mismatched nucleotide. In the RNA polymerase this occurs at the same active site used for polymerization and is therefore markedly different from the DNA polymerase where proofreading occurs at a distinct nuclease active site.The overall error rate is around 10−4 to 10−6.
Termination
In bacteria, termination of RNA transcription can be rho-dependent or rho-independent. The former relies on the rho factor, which destablizes the DNA-RNA heteroduplex and causes RNA release. The latter, also known as intrinsic termination, relies on a palindromic region of DNA. Transcribing the region causes the formation of a "hairpin" structure from the RNA transcription looping and binding upon itself. This hairpin structure is often rich in G-C base-pairs, making it more stable than the DNA-RNA hybrid itself. As a result, the 8 bp DNA-RNA hybrid in the transcription complex shifts to a 4 bp hybrid. These last 4 base pairs are weak A-U base pairs, and the entire RNA transcript will fall off the DNA.Transcription termination in eukaryotes is less well understood than in bacteria, but involves cleavage of the new transcript followed by template-independent addition of adenines at its new 3' end, in a process called polyadenylation.
Other organisms
Given that DNA and RNA polymerases both carry out template-dependent nucleotide polymerization, it might be expected that the two types of enzymes would be structurally related. However, x-ray crystallographic studies of both types of enzymes reveal that, other than containing a critical Mg2+ ion at the catalytic site, they are virtually unrelated to each other; indeed template-dependent nucleotide polymerizing enzymes seem to have arisen independently twice during the early evolution of cells. One lineage led to the modern DNA polymerases and reverse transcriptases, as well as to a few single-subunit RNA polymerases from phages and organelles. The other multi-subunit RNAP lineage formed all of the modern cellular RNA polymerases.Bacteria
In bacteria, the same enzyme catalyzes the synthesis of mRNA and non-coding RNA.RNAP is a large molecule. The core enzyme has five subunits :
- β': The β' subunit is the largest subunit, and is encoded by the rpoC gene. The β' subunit contains part of the active center responsible for RNA synthesis and contains some of the determinants for non-sequence-specific interactions with DNA and nascent RNA. It is split into two subunits in Cyanobacteria and chloroplasts.
- β: The β subunit is the second-largest subunit, and is encoded by the rpoB gene. The β subunit contains the rest of the active center responsible for RNA synthesis and contains the rest of the determinants for non-sequence-specific interactions with DNA and nascent RNA.
- α: The α subunit is the third-largest subunit and is present in two copies per molecule of RNAP, αI and αII. Each α subunit contains two domains: αNTD and αCTD. αNTD contains determinants for assembly of RNAP. αCTD contains determinants for interaction with promoter DNA, making non-sequence-non-specific interactions at most promoters and sequence-specific interactions at upstream-element-containing promoters, and contains determinants for interactions with regulatory factors.
- ω: The ω subunit is the smallest subunit. The ω subunit facilitates assembly of RNAP and stabilizes assembled RNAP.
Eukaryotes
s have multiple types of nuclear RNAP, each responsible for synthesis of a distinct subset of RNA. All are structurally and mechanistically related to each other and to bacterial RNAP:- RNA polymerase I synthesizes a pre-rRNA 45S, which matures into 28S, 18S and 5.8S rRNAs, which will form the major RNA sections of the ribosome.
- RNA polymerase II synthesizes precursors of mRNAs and most snRNA and microRNAs. This is the most studied type, and, due to the high level of control required over transcription, a range of transcription factors are required for its binding to promoters.
- RNA polymerase III synthesizes tRNAs, rRNA 5S and other small RNAs found in the nucleus and cytosol.
- RNA polymerase IV synthesizes siRNA in plants.
- RNA polymerase V synthesizes RNAs involved in siRNA-directed heterochromatin formation in plants.
Chloroplast also contain a second, structurally and mechanistically unrelated, single-subunit RNAP. Eukaryotic mitochondria use POLRMT, a nucleus-encoded single-subunit RNAP. Such phage-like polymerases are referred to as RpoT in plants.
Archaea
have a single type of RNAP, responsible for the synthesis of all RNA. Archaeal RNAP is structurally and mechanistically similar to bacterial RNAP and eukaryotic nuclear RNAP I-V, and is especially closely structurally and mechanistically related to eukaryotic nuclear RNAP II.The history of the discovery of the archaeal RNA polymerase is quite recent. The first analysis of the RNAP of an archaeon was performed in 1971, when the RNAP from the extreme halophile Halobacterium cutirubrum was isolated and purified. Crystal structures of RNAPs from Sulfolobus solfataricus and Sulfolobus shibatae set the total number of identified archaeal subunits at thirteen.
Archaea has the subunit corresponding to Eukaryotic Rpb1 split into two. There is no homolog to eukaryotic Rpb9 in the S. shibatae complex, although TFS has been proposed as one based on similarity. There is an additional subunit dubbed Rpo13; together with Rpo5 it occupies a space filled by an insertion found in bacterial β' subunits. An earlier, lower-resolution study on S. solfataricus structure did not find Rpo13 and only assigned the space to Rpo5/Rpb5. Rpo3 is notable in that it's an iron–sulfur protein. RNAP I/III subunit AC40 found in some eukaryotes share similar sequences, but does not bind iron. This domain, in either case, serves a structural function.
Archaeal RNAP subunit previously used an "RpoX" nomenclature where each subunit is assigned a letter in a way unrelated to any other systems. In 2009, a new nomenclature based on Eukaryotic Pol II subunit "Rpb" numbering was proposed.
Viruses
es and some other nucleocytoplasmic large DNA viruses synthesize RNA using a virally encoded multi-subunit RNAP. They are most similar to eukaryotic RNAPs, with some subunits minified or removed. Exactly which RNAP they are most similar to is a topic of debate. Most other viruses that synthesize RNA use unrelated mechanics.Many viruses use a single-subunit DNA-dependent RNAP that is structurally and mechanistically related to the single-subunit RNAP of eukaryotic chloroplasts and mitochondria and, more distantly, to DNA polymerases and reverse transcriptases. Perhaps the most widely studied such single-subunit RNAP is bacteriophage T7 RNA polymerase. ssRNAPs cannot proofread.
Other viruses use a RNA-dependent RNAP. This occurs in negative strand RNA viruses and dsRNA viruses, both of which exist for a portion of their life cycle as double-stranded RNA. However, some positive strand RNA viruses, such as poliovirus, also contain RNA-dependent RNAP.
History
RNAP was discovered independently by Charles Loe, Audrey Stevens, and Jerard Hurwitz in 1960. By this time, one half of the 1959 Nobel Prize in Medicine had been awarded to Severo Ochoa for the discovery of what was believed to be RNAP, but instead turned out to be polynucleotide phosphorylase.Purification
RNA polymerase can be isolated in the following ways:- By a phosphocellulose column.
- By glycerol gradient centrifugation.
- By a DNA column.
- By an ion chromatography column.