Sandia National Laboratories
The Sandia National Laboratories, managed and operated by the National Technology and Engineering Solutions of Sandia, is one of three National Nuclear Security Administration research and development laboratories in the United States. Their primary mission is to develop, engineer, and test the non-nuclear components of nuclear weapons and high technology. Headquartered in Central New Mexico near the Sandia Mountains, on Kirtland Air Force Base in Albuquerque, Sandia also has a campus in Livermore, California, next to Lawrence Livermore National Laboratory, and a test facility in Waimea, Kauai, Hawaii.
It is Sandia's mission to maintain the reliability and surety of nuclear weapon systems, conduct research and development in arms control and nonproliferation technologies, and investigate methods for the disposal of the United States' nuclear weapons program's hazardous waste. Other missions include research and development in energy and environmental programs, as well as the surety of critical national infrastructures. In addition, Sandia is home to a wide variety of research including computational biology, mathematics, materials science, alternative energy, psychology, MEMS, and cognitive science initiatives. Sandia formerly hosted ASCI Red, one of the world's fastest supercomputers until its recent decommission, and now hosts ASCI Red Storm, originally known as Thor's Hammer. Sandia is also home to the Z Machine. The Z Machine is the largest X-ray generator in the world and is designed to test materials in conditions of extreme temperature and pressure. It is operated by Sandia National Laboratories to gather data to aid in computer modeling of nuclear guns. In December 2016, it was announced that National Technology and Engineering Solutions of Sandia, under the direction of Honeywell International, would take over the management of Sandia National Laboratories starting on May 1, 2017.
Lab history
Sandia National Laboratories' roots go back to World War II and the Manhattan Project. Prior to the United States formally entering the war, the U.S. Army leased land near an Albuquerque, New Mexico airport known as Oxnard Field, to service transient Army and U.S. Navy aircraft. In January 1941 construction began on the Albuquerque Army Air Base, leading to establishment of the Bombardier School-Army Advanced Flying School near the end of the year. Soon thereafter it was renamed Kirtland Field, after early Army military pilot Colonel Roy C. Kirtland, and in mid-1942 the Army acquired Oxnard Field. During the war years facilities were expanded further and Kirtland Field served as a major Army Air Forces training installation.In the many months leading up to successful detonation of the first atomic bomb, the Trinity test, and delivery of the first airborne atomic weapon, Project Alberta, J. Robert Oppenheimer, Director of Los Alamos Laboratory, and his technical advisor, Hartly Rowe, began looking for a new site convenient to Los Alamos for the continuation of weapons development especially its non-nuclear aspects. They felt a separate division would be best to perform these functions. Kirtland had fulfilled Los Alamos' transportation needs for both the Trinity and Alberta projects, thus, Oxnard Field was transferred from the jurisdiction of the Army Air Corps to the U.S. Army Service Forces Chief of Engineer District, and thereafter, assigned to the Manhattan Engineer District. In July 1945, the forerunner of Sandia Laboratory, known as "Z" Division, was established at Oxnard Field to handle future weapons development, testing, and bomb assembly for the Manhattan Engineer District. The District-directive calling for establishing a secure area and construction of "Z" Division facilities referred to this as "Sandia Base" , after the nearby Sandia Mountains — apparently the first official recognition of the "Sandia" name.
Name | Tenure |
James S. Peery | January 2020– |
Stephen Younger | May 2017 –December 2019 |
Jill M. Hruby | July 2015 –May 2017 |
Paul Hommert | July 2010 –July 2015 |
Thomas Hunter | April 2005 –July 2010 |
C. Paul Robinson | August 1995 –April 2005 |
Albert Narath | 1989–1995 |
Irwin Welber | February 1986 –March 1989 |
George C. Dacey | August 1981 –January 1986 |
Morgan Sparks | October 1972 –July 1981 |
John A. Hornbeck | November 1966 –September 1972 |
Siegmund P. "Monk" Schwartz | September 1960 –October 1966 |
Julius Molnar | October 1958 –August 1960 |
James W. McRae | September 1953 –September 1958 |
Donald A. Quarles | March 1952 –August 1953 |
George Landry | October 1949 –February 1952 |
Sandia Laboratory was operated by the University of California until 1949, when President Harry S. Truman asked Western Electric, a subsidiary of American Telephone and Telegraph, to assume the operation as an "opportunity to render an exceptional service in the national interest." Sandia Corporation, a wholly owned subsidiary of Western Electric, was formed on October 5, 1949, and, on November 1, 1949, took over management of the Laboratory. The United States Congress designated Sandia Laboratories as a National laboratory in 1979. In October 1993, Sandia National Laboratories was managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin. As of May 2017, management of Sandia National Laboratory transitioned to National Technology and Engineering Solutions of Sandia, a wholly owned subsidiary of Honeywell International, covering government-owned facilities in Albuquerque, New Mexico ; Livermore, California ; Tonopah, Nevada; Shoreview, Minnesota; and Kauai, Hawaii. SNL/NM is headquarters and the largest laboratory, employing more than 6,600 employees, while SNL/CA is a smaller laboratory, with about 850 employees. Tonopah and Kauai are occupied on a "campaign" basis, as test schedules dictate.
Sandia led a project that studied how to decontaminate a subway system in the event of a biological weapons attack. As of September 2017, the process to decontaminate subways in such an event is "virtually ready to implement," said a lead Sandia engineer.
Legal issues
On February 13, 2007, a New Mexico State Court found Sandia Corporation liable for $4.7 million in damages for the firing of a former network security analyst, Shawn Carpenter, who had reported to his supervisors that hundreds of military installations and defense contractors' networks were compromised and sensitive information was being stolen including hundreds of sensitive Lockheed documents on the Mars Reconnaissance Orbiter project. When his supervisors told him to drop the investigation and do nothing with the information, he went to intelligence officials in the United States Army and later the Federal Bureau of Investigation to address the national security breaches. When Sandia managers discovered his actions months later, they revoked his security clearance and fired him.In 2014 an investigation determined Sandia Corp. used lab operations funds to pay for lobbying related to the renewal of its $2 billion contract to operate the lab. Sandia Corp. and its parent company, Lockheed Martin, agreed to pay a $4.8 million fine.
Technical areas
SNL/NM consists of five technical areas and several additional test areas. Each TA has its own distinctive operations; however, the operations of some groups at Sandia may span more than one TA, with one part of a team working on a problem from one angle, and another subset of the same team located in a different building or area working with other specialized equipment. A description of each area is given below.TA-I operations are dedicated primarily to three activities the design, research, and development of weapon systems; limited production of weapon system components; and energy programs. TA-I facilities include the main library and offices, laboratories, and shops used by administrative and technical staff.
TA-II is a facility that was established in 1948 for the assembly of chemical high explosive main charges for nuclear weapons and later for production scale assembly of nuclear weapons. Activities in TA-II include the decontamination, decommissioning, and remediation of facilities and landfills used in past research and development activities. Remediation of the Classified Waste Landfill which started in March 1998, neared completion in FY2000. A testing facility, the Explosive Component Facility, integrates many of the previous TA-II test activities as well as some testing activities previously performed in other remote test areas. The Access Delay Technology Test Facility is also located in TA-II.
TA-III is adjacent to and south of TA-V . TA-III facilities include extensive design-test facilities such as rocket sled tracks, centrifuges and a radiant heat facility. Other facilities in TA-III include a paper destructor, the Melting and Solidification Laboratory and the Radioactive and Mixed Waste Management Facility. RMWMF serves as central processing facility for packaging and storage of low-level and mixed waste. The remediation of the Chemical Waste Landfill, which started in September 1998, is an ongoing activity in TA-III.
TA-IV, located approximately 1/2 mile south of TA-I, consists of several inertial-confinement fusion research and pulsed power research facilities, including the High Energy Radiation Megavolt Electron Source, the Z Facility, the Short Pulsed High Intensity Nanosecond X-Radiator Facility, and the Saturn Accelerator. TA-IV also hosts some computer science and cognition research.
TA-V contains two research reactor facilities, an intense gamma irradiation facility, and the Hot Cell Facility.
SNL/NM also has test areas outside of the five technical areas listed above. These test areas, collectively known as Coyote Test Field, are located southeast of TA-III and/or in the canyons on the west side of the Manzanita Mountains. Facilities in the Coyote Canyon Test Field include the Solar Tower Facility, the Lurance Canyon Burn Site and the Aerial Cable Facility.
Open-source software
In the 1970s, the Sandia, Los Alamos, Air Force Weapons Laboratory Technical Exchange Committee initiated the development of the SLATEC library of mathematical and statistical routines, written in FORTRAN 77.Today, Sandia National Laboratories is home to several open-source software projects:
- FCLib is a library for the identification and manipulation of coherent regions or structures from spatio-temporal data. FCLib focuses on providing data structures that are "feature-aware" and support feature-based analysis. It is written in C and developed under a "BSD-like" license.
- LAMMPS is a molecular dynamics library that can be used to model parallel atomic/subatomic processes at large scale. It is produced under the GNU General Public License and distributed on the Sandia National Laboratories website as well as SourceForge.
- LibVMI is a library for simplifying the reading and writing of memory in running virtual machines, a technique known as virtual machine introspection. It is licensed under the GNU Lesser General Public License.
- MapReduce-MPI Library is an implementation of MapReduce for distributed-memory parallel machines, utilizing the Message Passing Interface for communication. It is developed under a modified Berkeley Software Distribution license.
- MultiThreaded Graph Library is a collection of graph-based algorithms designed to take advantage of parallel, shared-memory architectures such as the Cray XMT, Symmetric Multiprocessor machines, and multi-core workstations. It is developed under a BSD License.
- ParaView is a cross-platform application for performing data analysis and visualization. It is a collaborative effort, developed by Sandia National Laboratories, Los Alamos National Laboratories, and the United States Army Research Laboratory, and funded by the Advanced Simulation and Computing Program. It is developed under a BSD license.
- Pyomo is a python-based optimisation Mathematical Programming Language with drivers with most commercial and open-source solver engines
- Soccoro, a collaborative effort with Wake Forest and Vanderbilt Universities, is object-oriented software for performing electronic-structure calculations based on density-functional theory. It utilizes libraries such as MPI, BLAS, and LAPACK and is developed under the GNU General Public License.
- Titan Informatics Toolkit is a collection of cross-platform libraries for ingesting, analyzing, and displaying scientific and informatics data. It is a collaborative effort with Kitware, Inc., and uses various open-source components such as the Boost Graph Library. It is developed under a New BSD license.
- Trilinos is an object-oriented library for building scalable scientific and engineering applications, with a focus on linear algebra techniques. Most Trilinos packages are licensed under a Modified BSD License.
- Xyce is an open source, SPICE-compatible, high-performance analog circuit simulator, capable of solving extremely large circuit problems.