Saturn IB


The Saturn IB was an American launch vehicle commissioned by the National Aeronautics and Space Administration for the Apollo program. It replaced the S-IV second stage of the Saturn I with the much more powerful S-IVB, able to launch a partially fueled Apollo command and service module or a fully fueled Apollo Lunar Module into low Earth orbit for early flight tests before the larger Saturn V needed for lunar flight was ready.
By sharing the S-IVB upper stage, the Saturn IB and Saturn V provided a common interface to the Apollo spacecraft. The only major difference was that the S-IVB on the Saturn V burned only part of its propellant to achieve Earth orbit, so it could be restarted for trans-lunar injection. The S-IVB on the Saturn IB needed all of its propellant to achieve Earth orbit.
The Saturn IB launched two uncrewed CSM suborbital flights to a height of 162km, one uncrewed LM orbital flight, and the first crewed CSM orbital mission. It also launched one orbital mission, AS-203, without a payload so the S-IVB would have residual liquid hydrogen fuel. This mission supported the design of the restartable version of the S-IVB used in the Saturn V, by observing the behavior of the liquid hydrogen in weightlessness.
In 1973, the year after the Apollo lunar program ended, three Apollo CSM/Saturn IBs ferried crews to the Skylab space station. In 1975, one last Apollo/Saturn IB launched the Apollo portion of the joint US-USSR Apollo–Soyuz Test Project. A backup Apollo CSM/Saturn IB was assembled and made ready for a Skylab rescue mission, but never flown.
The remaining Saturn IBs in NASA's inventory were scrapped after the ASTP mission, as no use could be found for them and all heavy lift needs of the US space program could be serviced by the cheaper and more versatile Titan III family.

History

In 1959, NASA's Silverstein Committee issued recommendations to develop the Saturn class launch vehicles, growing from the C-1. When the Apollo program was started in 1961 with the goal of landing men on the Moon, NASA chose the Saturn I for Earth orbital test missions. However, the Saturn I's payload limit of to 162km would allow testing of only the command module with a smaller propulsion module attached, as the command and service module would have a dry weight of at least, in addition to service propulsion and reaction control fuel. In July 1962, NASA announced selection of the C-5 for the lunar landing mission, and decided to develop another launch vehicle by upgrading the Saturn I, replacing its S-IV second stage with the S-IVB, which would also be modified for use as the Saturn V third stage. The S-I first stage would also be upgraded to the S-IB by improving the thrust of its engines and removing some weight. The new Saturn IB, with a payload capability of at least, would replace the Saturn I for Earth orbit testing, allowing the command and service module to be flown with a partial fuel load. It would also allow launching the lunar excursion module separately for uncrewed and crewed Earth orbital testing, before the Saturn V was ready to be flown. It would also give early development to the third stage.
On May 12, 1966, NASA announced the vehicle would be called the "uprated Saturn I", at the same time the "lunar excursion module" was renamed the lunar module. However, the "uprated Saturn I" terminology was reverted to Saturn IB on December 2, 1967.
By the time it was developed, the Saturn IB payload capability had increased to. By 1973, when it was used to launch three Skylab missions, the first-stage engine had been upgraded further, raising the payload capability to.

Specifications

Launch vehicle

Payload configurations

S-IB stage

The S-IB stage was built by the Chrysler corporation at the Michoud Assembly Facility, New Orleans. It was powered by eight Rocketdyne H-1 rocket engines burning RP-1 fuel with liquid oxygen. Eight Redstone tanks were clustered around a Jupiter rocket LOX tank. The four outboard engines were mounted on gimbals, allowing them to be steered to control the rocket. Eight fins surrounding the base thrust structure provided aerodynamic stability and control.
Data from:

S-IVB-200 stage

The S-IVB was built by the Douglas Aircraft Company at Huntington Beach, California. The S-IVB-200 model was similar to the S-IVB-500 third stage used on the Saturn V, with the exception of the interstage adapter, smaller auxiliary propulsion control modules, and lack of on-orbit engine restart capability. It was powered by a single Rocketdyne J-2 engine. The fuel and oxidizer tanks shared a common bulkhead, which saved about ten tons of weight and reduced vehicle length over ten feet.

Instrument unit

built the instrument unit at the Space Systems Center in Huntsville, Alabama. Located at the top of the S-IVB stage, it consisted of a Launch Vehicle Digital Computer, an inertial platform, accelerometers, a tracking, telemetry and command system and associated environmental controls. It controlled the entire rocket from just before liftoff until battery depletion. Like other rocket guidance systems, it maintained its state vector by integrating accelerometer measurements, sent firing and steering commands to the main engines and auxiliary thrusters, and fired the appropriate ordnance and solid rocket motors during staging and payload separation events.
As with other rockets, a completely independent and redundant range safety system could be invoked by ground radio command to terminate thrust and to destroy the vehicle should it malfunction and threaten people or property on the ground. In the Saturn IB and V, the range safety system was permanently disabled by ground command after safely reaching orbit. This was done to ensure that the S-IVB stage would not inadvertently rupture and create a cloud of debris in orbit that could endanger the crew of the Apollo CSM.

Launch sequence events

Acceleration of the Saturn IB increased from 1.24G at liftoff to a maximum of 4.35G at the end of the S-IB stage burn, and increased again from 0G to 2.85G from stage separation to the end of the S-IVB burn.
AS-206, 207, and 208 inserted the Command and Service Module in a elliptical orbit which was co-planar with the Skylab one. The SPS engine of the Command and Service Module was used at orbit apogee to achieve a Hohmann transfer to the Skylab orbit at.

Saturn IB vehicles and launches

The first five Saturn IB launches for the Apollo program were made from LC-34 and LC-37, Cape Kennedy Air Force Station.
The Saturn IB was used between 1973 and 1975 for three crewed Skylab flights, and one Apollo-Soyuz Test Project flight. This final production run did not have alternating black and white S-IB stage tanks, or vertical stripes on the S-IVB aft tank skirt, which were present on the earlier vehicles. Since LC-34 and 37 were inactive by then, these launches utilized Kennedy Space Center's LC-39B. Mobile Launcher Platform No. 1 was modified, adding an elevated platform known as the "milkstool" to accommodate the height differential between the Saturn IB and the much larger Saturn V. This enabled alignment of the Launch Umbilical Tower's access arms to accommodate crew access, fueling, and ground electrical connections for the Apollo spacecraft and S-IVB upper stage. The tower's second stage access arms were modified to service the S-IB first stage.
For earlier launches of vehicles in the Saturn I series, see the list in the Saturn I article.

Saturn IB rockets on display

As of 2019 there are three locations where Saturn IB vehicles are on display:
In 1972, the cost of a Saturn IB including launch was.