Sensor


In the broadest definition, a sensor is a device, module, machine, or subsystem whose purpose is to detect events or changes in its environment and send the information to other electronics, frequently a computer processor. A sensor is always used with other electronics.
Sensors are used in everyday objects such as touch-sensitive elevator buttons and lamps which dim or brighten by touching the base, besides innumerable applications of which most people are never aware. With advances in micromachinery and easy-to-use microcontroller platforms, the uses of sensors have expanded beyond the traditional fields of temperature, pressure or flow measurement, for example into MARG sensors. Moreover, analog sensors such as potentiometers and force-sensing resistors are still widely used. Applications include manufacturing and machinery, airplanes and aerospace, cars, medicine, robotics and many other aspects of our day-to-day life. There are a wide range of other sensors, measuring chemical & physical properties of materials. A few examples include optical sensors for Refractive index measurement, vibrational sensors for fluid viscosity measurement and electro-chemical sensor for monitoring pH of fluids.
A sensor's sensitivity indicates how much the sensor's output changes when the input quantity being measured changes. For instance, if the mercury in a thermometer moves 1 cm when the temperature changes by 1 °C, the sensitivity is 1 cm/°C. Some sensors can also affect what they measure; for instance, a room temperature thermometer inserted into a hot cup of liquid cools the liquid while the liquid heats the thermometer. Sensors are usually designed to have a small effect on what is measured; making the sensor smaller often improves this and may introduce other advantages.
Technological progress allows more and more sensors to be manufactured on a microscopic scale as microsensors using MEMS technology. In most cases, a microsensor reaches a significantly faster measurement time and higher sensitivity compared with macroscopic approaches. Due the increasing demand for rapid, affordable and reliable information in today's world, disposable sensors—low-cost and easy‐to‐use devices for short‐term monitoring or single‐shot measurements—have recently gained growing importance. Using this class of sensors, critical analytical information can be obtained by anyone, anywhere and at any time, without the need for recalibration and worrying about contamination.

Classification of measurement errors

A good sensor obeys the following rules:
Most sensors have a linear transfer function. The sensitivity is then defined as the ratio between the output signal and measured property. For example, if a sensor measures temperature and has a voltage output, the sensitivity is a constant with the units . The sensitivity is the slope of the transfer function. Converting the sensor's electrical output to the measured units requires dividing the electrical output by the slope. In addition, an offset is frequently added or subtracted. For example, −40 must be added to the output if 0 V output corresponds to −40 C input.
For an analog sensor signal to be processed, or used in digital equipment, it needs to be converted to a digital signal, using an analog-to-digital converter.

Sensor deviations

Since sensors cannot replicate an ideal transfer function, several types of deviations can occur which limit sensor accuracy:
All these deviations can be classified as systematic errors or random errors. Systematic errors can sometimes be compensated for by means of some kind of calibration strategy. Noise is a random error that can be reduced by signal processing, such as filtering, usually at the expense of the dynamic behavior of the sensor.

Resolution

The resolution of a sensor is the smallest change it can detect in the quantity that it is measuring. The resolution of a sensor with a digital output is usually the resolution of the digital output. The resolution is related to the precision with which the measurement is made, but they are not the same thing. A sensor's accuracy may be considerably worse than its resolution.
A chemical sensor is a self-contained analytical device that can provide information about the chemical composition of its environment, that is, a liquid or a gas phase. The information is provided in the form of a measurable physical signal that is correlated with the concentration of a certain chemical species. Two main steps are involved in the functioning of a chemical sensor, namely, recognition and transduction. In the recognition step, analyte molecules interact selectively with receptor molecules or sites included in the structure of the recognition element of the sensor. Consequently, a characteristic physical parameter varies and this variation is reported by means of an integrated transducer that generates the output signal.
A chemical sensor based on recognition material of biological nature is a biosensor. However, as synthetic biomimetic materials are going to substitute to some extent recognition biomaterials, a sharp distinction between a biosensor and a standard chemical sensor is superfluous. Typical biomimetic materials used in sensor development are molecularly imprinted polymers and aptamers.

Biosensor

In biomedicine and biotechnology, sensors which detect analytes thanks to a biological component, such as cells, protein, nucleic acid or biomimetic polymers, are called biosensors.
Whereas a non-biological sensor, even organic, for biological analytes is referred to as sensor or nanosensor. This terminology applies for both in-vitro and in vivo applications.
The encapsulation of the biological component in biosensors, presents a slightly different problem that ordinary sensors; this can either be done by means of a semipermeable barrier, such as a dialysis membrane or a hydrogel, or a 3D polymer matrix, which either physically constrains the sensing macromolecule or chemically constrains the macromolecule by bounding it to the scaffold.

MOS sensors

technology originates from the MOSFET invented by Mohamed M. Atalla and Dawon Kahng in 1959, and demonstrated in 1960. MOSFET sensors were later developed, and they have since been widely used to measure physical, chemical, biological and environmental parameters.

Biochemical sensors

A number of MOSFET sensors have been developed, for measuring physical, chemical, biological and environmental parameters. The earliest MOSFET sensors include the open-gate field-effect transistor introduced by Johannessen in 1970, the ion-sensitive field-effect transistor invented by Piet Bergveld in 1970, the adsorption FET patented by P.F. Cox in 1974, and a hydrogen-sensitive MOSFET demonstrated by I. Lundstrom, M.S. Shivaraman, C.S. Svenson and L. Lundkvist in 1975. The ISFET is a special type of MOSFET with a gate at a certain distance, and where the metal gate is replaced by an ion-sensitive membrane, electrolyte solution and reference electrode. The ISFET is widely used in biomedical applications, such as the detection of DNA hybridization, biomarker detection from blood, antibody detection, glucose measurement, pH sensing, and genetic technology.
By the mid-1980s, numerous other MOSFET sensors had been developed, including the gas sensor FET, surface accessible FET, charge flow transistor, pressure sensor FET, chemical field-effect transistor, reference ISFET, biosensor FET, enzyme-modified FET and immunologically modified FET. By the early 2000s, BioFET types such as the DNA field-effect transistor, gene-modified FET and cell-potential BioFET had been developed.

Image sensors

MOS technology is the basis for modern image sensors, including the charge-coupled device and the CMOS active-pixel sensor, used in digital imaging and digital cameras. Willard Boyle and George E. Smith developed the CCD in 1969. While researching the MOS process, they realized that an electric charge was the analogy of the magnetic bubble and that it could be stored on a tiny MOS capacitor. As it was fairly straighforward to fabricate a series of MOS capacitors in a row, they connected a suitable voltage to them so that the charge could be stepped along from one to the next. The CCD is a semiconductor circuit that was later used in the first digital video cameras for television broadcasting.
The MOS active-pixel sensor was developed by Tsutomu Nakamura at Olympus in 1985. The CMOS active-pixel sensor was later developed by Eric Fossum and his team in the early 1990s.
MOS image sensors are widely used in optical mouse technology. The first optical mouse, invented by Richard F. Lyon at Xerox in 1980, used a 5µm NMOS sensor chip. Since the first commercial optical mouse, the IntelliMouse introduced in 1999, most optical mouse devices use CMOS sensors.

Monitoring sensors

MOS monitoring sensors are used for house monitoring, office and agriculture monitoring, traffic monitoring, weather monitoring, defense monitoring, and monitoring temperature, humidity, air pollution, fire, health, security and lighting. MOS gas detector sensors are used to detect carbon monoxide, sulfur dioxide, hydrogen sulfide, ammonia, and other gas substances. Other MOS sensors include intelligent sensors and wireless sensor network technology.