Terence James Elkins
Terence James Elkins is an Australian-born American physicist. In 1960, he participated in an expedition from Mawson Station which conducted the first geological surveys of the Napier Mountains in Antarctica. The highest of this group of mountains, Mount Elkins, was subsequently named after him. In 1979, he received the Harold Brown Award, the Air Force's highest honour for research and development, for research he conducted that contributed to the development of the AN/FPS-118 over-the-horizon backscatter air defence radar system. This system, consisting of six one-megawatt transmitters and their associated horizontal linear phased array antennas, is currently the largest radar system in the world.
Education
Elkins earned his Bachelor of Electrical Engineering degree from University of Melbourne in 1957. He earned his master's degree in Physics and Astronomy from Boston University in 1967. He earned his PhD from the same institution in 1970, publishing a thesis entitled Studies of Ionospheric Irregularity Using Radio Astronomical Techniques.Mawson Station (1960–1961)
After completion of his bachelor's degree, Elkins joined the ANARE team that wintered over at Mawson Station in Australian Antarctic Territory, East Antarctica in 1960. The wintering party comprised 33 expeditioners including 12 members of the RAAF Antarctic Flight; the Officer-in-Charge was Hendrick Geysen. That year, Elkins was part of a mechanised and sledging field party that travelled from Mawson Station to the Napier Mountains in Enderby Land, East Antarctica. The men of this expedition, led by fellow Antarctic explorer Syd Kirkby, conducted the first geological surveys of that area of the continent. The highest of this small group of mountains, Mount Elkins, was subsequently named after Dr. Elkins.Other survey teams that year visited the Framnes Mountains, conducted geological and survey work in the Prince Charles Mountains, and visited the Emperor penguin colonies at Taylor Glacier and Fold Island.
ANARE has since been renamed the Australian Antarctic Program, managed by the Australian Antarctic Division, itself a division of the Department of the Environment, Water, Heritage and the Arts.
Emigration to the United States and early career
Elkins emigrated from his native Australia to the United States in 1963, at the height of the Space Race, after being recruited by the scientific research program of the United States Air Force. Beginning in the early 1960s, he conducted research focused mainly on the upper atmosphere and ionosphere, and improvements to ground, airborne, and space-based surveillance and reconnaissance systems, including over-the-horizon radar systems.In addition to his work at Hanscom Air Force Base, much of his early research was also conducted at Sagamore Hill Radio Observatory, a ground-based solar observatory located in Hamilton, Massachusetts. Sagamore Hill Solar Radio Observatory is a functional component of the Radio Solar Telescope Network.
In 1980, he developed and published an auroral echo-scattering model to predict the obscuration of targets when the radar transmission path is through the auroral region.
Development of the over-the-horizon air defence radar system
Elkins was part of a team of Rome Air Development Center engineers that developed and constructed components for frequency modulation/continuous wave radars capable of detecting and tracking objects at over-the-horizon ranges. A prototype radar was installed and evaluated on 15 September 1970. The system incorporated a Beverage array receive antenna, a high-power transmitter array, and an operations center. This prototype became operational on 30 October of that year. Experimental transmissions from the Maine site covered a 60° sector from 16.5° to 76.5° azimuth and from 900 to 3,300 km in range from the radar.Based on the success of these early experiments, the Department of Defense proposed to deploy a fully operational radar system. This radar system, covering 180° in azimuth, was built at the same locations in Maine. Initial testing was conducted from June 1980 to June 1981. GE Aerospace received a contract in mid-1982 for full-scale development of the AN/FPS-118 program.
The operational system consisted of multiple OTH-B radars functioning as an early warning system, to detect incoming enemy bombers and cruise missiles. The system, as initially envisioned, was to consist of four sectors:
- East Coast Sector : facing east, including a group of three transmitters at Moscow Air Force Station, Maine, a group of three receivers at Columbia Air Force Station, also in Maine, and an operations center located at Bangor International Airport.
- West Coast Sector : facing west, including a group of three transmitters at Christmas Valley, Oregon, a group of three receivers at Tule Lake, near Alturas, California, and an operations center at Mountain Home Air Force Base, Idaho.
- North Sector : facing north, cancelled prior to completion
- Central Sector : facing south
The Air Force currently maintains the six East Coast and West Coast OTH-B radars in a state called warm storage, which preserves the physical and electrical integrity of the system and permits recall, should a need arise. It would require at least 24 months to bring these first generation OTH-B radars into an operational status.
Later career
Dr. Elkins spent much of his career at Hanscom Air Force Base in Bedford, Massachusetts, where he conducted research at several of the tenant commands, including the Air Force Cambridge Research Laboratories and the Geophysics Laboratory. He also conducted research at the Rome Air Development Center, located at Griffiss Air Force Base in Rome, New York. The Geophysics Laboratory is now known as the Phillips Laboratory, while the Rome Air Development Center is now known as the Rome Laboratory. Both research laboratories operate under the Air Force Materiel Command.Over the course of a career that spanned nearly five decades, Dr. Elkins' research focused on development and deployment of electronic systems for the gathering and dissemination of military intelligence, including command, control and communications, satellite imagery, electronic warfare, and systems for remote sensing of the environment from surface, airborne, space and undersea based platforms.
After more than 20 years in research and development for the United States Air Force, he joined the Mitre Corporation in McLean, Virginia, where he continued his research for another 25 years. The majority of his work at MITRE was for the Command, Control, Communications, and Intelligence Federally Funded Research and Development Center supporting the United States Department of Defense.
Awards and recognition
Elkins was the recipient of the 1979 Harold Brown Award. The Harold Brown Award is the Air Force's highest honour for research and development.Publications
Elkins has published many scientific journal articles, including:- Ionospheric effects associated with nuclear weapon tests, July–December 1962: a scientific report, by Terence J. Elkins & Alv Egeland.
- Influence of solar protons on high-latitude ionospheric disturbance, by Terence J. Elkins.
- Frequency dependence of radio star scintillations, by J. Aarons, R.S. Allen, and T.J. Elkins.
- Measurement and interpretation of power spectrums of ionospheric scintillation at a sub-auroral location, by Terence J. Elkins and Michael D. Papagiannis.
- Observations of travelling ionospheric disturbances using stationary satellites, by T.J. Elkins and F.F. Slack.
- Dispersive motions of ionospheric irregularities, by Michael D. Papagiannis and Terence J. Elkins.