Thermal energy storage


Thermal energy storage is achieved with widely differing technologies. Depending on the specific technology, it allows excess thermal energy to be stored and used hours, days, months later, at scales ranging from the individual process, building, multiuser-building, district, town, or region. Usage examples are the balancing of energy demand between daytime and nighttime, storing summer heat for winter heating, or winter cold for summer air conditioning. Storage media include water or ice-slush tanks, masses of native earth or bedrock accessed with heat exchangers by means of boreholes, deep aquifers contained between impermeable strata; shallow, lined pits filled with gravel and water and insulated at the top, as well as eutectic solutions and phase-change materials.
Other sources of thermal energy for storage include heat or cold produced with heat pumps from off-peak, lower cost electric power, a practice called peak shaving; heat from combined heat and power power plants; heat produced by renewable electrical energy that exceeds grid demand and waste heat from industrial processes. Heat storage, both seasonal and short term, is considered an important means for cheaply balancing high shares of variable renewable electricity production and integration of electricity and heating sectors in energy systems almost or completely fed by renewable energy.

Solar energy storage

Most practical active solar heating systems provide storage from a few hours to a day's worth of energy collected. However, there are a growing number of facilities that use seasonal thermal energy storage, enabling solar energy to be stored in summer for space heating use during winter. The Drake Landing Solar Community in Alberta, Canada, has now achieved a year-round 97% solar heating fraction, a world record made possible only by incorporating STES.
The use of both latent heat and sensible heat are also possible with high temperature solar thermal input. Various eutectic mixtures of metals, such as Aluminium and Silicon offer a high melting point suited to efficient steam generation, while high alumina cement-based materials offer good thermal storage capabilities.

Molten-salt technology

of molten salt is also used for storing solar energy at a high temperature. It is termed molten-salt technology or molten-salt energy storage. Molten salts can be employed as a thermal energy storage method to retain thermal energy. Presently, this is a commercially used technology to store the heat collected by concentrated solar power. The heat can later be converted into superheated steam to power conventional steam turbines and generate electricity in bad weather or at night. It was demonstrated in the Solar Two project from 1995-1999. Estimates in 2006 predicted an annual efficiency of 99%, a reference to the energy retained by storing heat before turning it into electricity, versus converting heat directly into electricity. Various eutectic mixtures of different salts are used. Experience with such systems exists in non-solar applications in the chemical and metals industries as a heat-transport fluid.
The salt melts at. It is kept liquid at in an insulated "cold" storage tank. The liquid salt is pumped through panels in a solar collector where the focused sun heats it to. It is then sent to a hot storage tank. With proper insulation of the tank the thermal energy can be usefully stored for up to a week. When electricity is needed, the hot molten salt is pumped to a conventional steam-generator to produce superheated steam for driving a conventional turbine/generator set as used in any coal or oil or nuclear power plant. A 100-megawatt turbine would need a tank of about tall and in diameter to drive it for four hours by this design.
Single tank with divider plate to hold both cold and hot molten salt, is under development. It is more economical by achieving 100% more heat storage per unit volume over the dual tanks system as the molten-salt storage tank is costly due to its complicated construction. Phase Change Material are also used in molten-salt energy storage.
Several parabolic trough power plants in Spain
and solar power tower developer SolarReserve use this thermal energy storage concept. The Solana Generating Station in the U.S. can store 6 hours worth of generating capacity in molten salt. During the summer of 2013 the Gemasolar Thermosolar solar power-tower/molten-salt plant in Spain achieved a first by continuously producing electricity 24 hours per day for 36 days.

Adsorption (or Sorption) solar heating and storage

The low cost and high cycle rate of synthetic zeolites such as Linde 13X with water adsorbate has garnered much academic and commercial interest recently for use for thermal energy storage, specifically of low-grade solar and waste heat. Several pilot projects have been funded in the EU from 2000 to the present. The basic concept is to store solar thermal energy as chemical latent energy in the zeolite. Typically, hot dry air from flat plate solar collectors is made to flow through a bed of zeolite such that any water adsorbate present is driven off. Storage can be diurnal, weekly, monthly, or even seasonal depending on the volume of the zeolite and the area of the solar thermal panels. When heat is called for during the night, or sunless hours, or winter, humidified air flows through the zeolite. As the humidity is adsorbed by the zeolite, heat is released to the air and subsequently to the building space. This form of TES, with specific use of zeolites, was first taught by Guerra in 1978. Advantages over molten salts and other high temperature TES include that the temperature required is only the stagnation temperature typical of a solar flat plate thermal collector, and as long as the zeolite is kept dry, the energy is stored indefinitely. Because of the low temperature, and because the energy is stored as latent heat of adsorption, thus eliminating the insulation requirements of a molten salt storage system, costs are significantly lower.

Heat storage in tanks or rock caverns

A steam accumulator consists of an insulated steel pressure tank containing hot water and steam under pressure. As a heat storage device, it is used to mediate heat production by a variable or steady source from a variable demand for heat. Steam accumulators may take on a significance for energy storage in solar thermal energy projects.
Large stores are widely used in Scandinavia to store heat for several days, to decouple heat and power production and to help meet peak demands. Interseasonal storage in caverns has been investigated and appears to be economical and plays a significant role in heating in Finland.
Helen Oy estimates an 11.6 GWh capacity and 120 MW thermal output for its 260,000 m³ water cistern under Mustikkamaa, operating from 2021 to offset days of peak production/demand; while the 300,000 m³ rock caverns 50 m under sea level in Kruunuvuorenranta were designated in 2018 to store heat in summer from warm seawater and release it in winter for district heating.

Heat storage in hot rocks, concrete, pebbles etc

Water has one of the highest thermal capacities Heat capacity - 4.2 J/ whereas concrete has about one third of that. On the other hand, concrete can be heated to much higher temperatures – 1200 °C by e.g. electrical heating and therefore has a much higher overall volumetric capacity. Thus in the example below, an insulated cube of about 2.8 m would appear to provide sufficient storage for a single house to meet 50% of heating demand. This could, in principle, be used to store surplus wind or PV heat due to the ability of electrical heating to reach high temperatures. At the neighborhood level, the Wiggenhausen-Süd solar development at Friedrichshafen has received international attention. This features a 12,000 m3 reinforced concrete thermal store linked to 4,300 m² of solar collectors, which will supply the 570 houses with around 50% of their heating and hot water. Siemens-Gamesa built a 130 MWh thermal storage near Hamburg with 750 °C basalt and 1.5 MW electric output. A similar system is scheduled for Sorø, Denmark, with 41-58% of the stored 18 MWh heat returned for the town's district heating, and 30-41% returned as electricity.

Miscibility gap alloy (MGA) technology

alloys rely on the phase change of a metallic material to store thermal energy.
Rather than pumping the liquid metal between tanks as in a molten-salt system, the metal is encapsulated in another metallic material that it cannot alloy with. Depending on the two materials selected storage densities can be between 0.2 and 2 MJ/L.
A working fluid, typically water or steam, is used to transfer the heat into and out of the MGA. Thermal conductivity of MGAs is often higher than competing technologies which means quicker "charge" and "discharge" of the thermal storage is possible. The technology has not yet been implemented on a large scale.

Electric thermal storage heaters

Storage heaters are commonplace in European homes with time-of-use metering. They consist of high-density ceramic bricks or feolite blocks heated to a high temperature with electricity, and may or may not have good insulation and controls to release heat over a number of hours.

Ice-based technology

Several applications are being developed where ice is produced during off-peak periods and used for cooling at a later time. For example, air conditioning can be provided more economically by using low-cost electricity at night to freeze water into ice, then using the cooling capacity of ice in the afternoon to reduce the electricity needed to handle air conditioning demands. Thermal energy storage using ice makes use of the large heat of fusion of water. Historically, ice was transported from mountains to cities for use as a coolant. One metric ton of water can store 334 million joules or 317,000 BTUs. A relatively small storage facility can hold enough ice to cool a large building for a day or a week.
In addition to using ice in direct cooling applications, it is also being used in heat pump based heating systems. In these applications, the phase change energy provides a very significant layer of thermal capacity that is near the bottom range of temperature that water source heat pumps can operate in. This allows the system to ride out the heaviest heating load conditions and extends the timeframe by which the source energy elements can contribute heat back into the system.

Cryogenic energy storage

This uses liquification of air or nitrogen as an energy store.
A pilot cryogenic energy system that uses liquid air as the energy store, and low-grade waste heat to drive the thermal re-expansion of the air, has been operating at a power station in Slough, UK since 2010.

Hot silicon technology

Solid or molten silicon offers much higher storage temperatures than salts with consequent greater capacity and efficiency. It is being researched as a possible more energy efficient storage technology. Silicon is able to store more than 1MWh of energy per cubic metre at 1400 °C.
Molten silicon thermal energy storage is being developed by Australian company 1414 Degrees as a more energy efficient storage technology, with a combined heat and power output.

Pumped-heat electricity storage

In pumped-heat electricity storage, a reversible heat-pump system is used to store energy as a temperature difference between two heat stores.

Isentropic

One system which was being developed by the now-bankrupt UK company Isentropic operates as follows. It comprises two insulated containers filled with crushed rock or gravel; a hot vessel storing thermal energy at high temperature and high pressure, and a cold vessel storing thermal energy at low temperature and low pressure. The vessels are connected at top and bottom by pipes and the whole system is filled with the inert gas argon.
During the charging cycle, the system uses off-peak electricity to work as a heat pump. Argon at ambient temperature and pressure from the top of the cold store is compressed adiabatically to a pressure of 12 bar, heating it to around. The compressed gas is transferred to the top of the hot vessel where it percolates down through the gravel, transferring its heat to the rock and cooling to ambient temperature. The cooled, but still pressurized, gas emerging at the bottom of the vessel is then expanded back down to 1 bar, which lowers its temperature to -150 °C. The cold gas is then passed up through the cold vessel where it cools the rock while being warmed back to its initial condition.
The energy is recovered as electricity by reversing the cycle. The hot gas from the hot vessel is expanded to drive a generator and then supplied to the cold store. The cooled gas retrieved from the bottom of the cold store is compressed which heats the gas to ambient temperature. The gas is then transferred to the bottom of the hot vessel to be reheated.
The compression and expansion processes are provided by a specially designed reciprocating machine using sliding valves. Surplus heat generated by inefficiencies in the process is shed to the environment through heat exchangers during the discharging cycle.
The developer claims that a round trip efficiency of 72-80% is achievable. This compares to >80% achievable with pumped hydro energy storage.
Another proposed system uses turbomachinery and is capable of operating at much higher power levels. Use of Phase Change Material as heat storage material would enhance the performance further.

Endothermic/exothermic chemical reactions

Salt hydrate technology

One example of an experimental storage system based on chemical reaction energy is the salt hydrate technology. The system uses the reaction energy created when salts are hydrated or dehydrated. It works by storing heat in a container containing 50% sodium hydroxide solution. Heat is stored by evaporating the water in an endothermic reaction. When water is added again, heat is released in an exothermic reaction at 50 °C. Current systems operate at 60% efficiency. The system is especially advantageous for seasonal thermal energy storage, because the dried salt can be stored at room temperature for prolonged times, without energy loss. The containers with the dehydrated salt can even be transported to a different location. The system has a higher energy density than heat stored in water and the capacity of the system can be designed to store energy from a few months to years.
In 2013 the Dutch technology developer TNO presented the results of the MERITS project to store heat in a salt container. The heat, which can be derived from a solar collector on a rooftop, expels the water contained in the salt. When the water is added again, the heat is released, with almost no energy losses. A container with a few cubic meters of salt could store enough of this thermochemical energy to heat a house throughout the winter. In a temperate climate like that of the Netherlands, an average low-energy household requires about 6.7 GJ/winter. To store this energy in water, 23 m3 insulated water storage would be needed, exceeding the storage abilities of most households. Using salt hydrate technology with a storage density of about 1 GJ/m3, 4–8 m3 could be sufficient.
As of 2016, researchers in several countries are conducting experiments to determine the best type of salt, or salt mixture. Low pressure within the container seems favourable for the energy transport. Especially promising are organic salts, so called ionic liquids. Compared to lithium halide based sorbents they are less problematic in terms of limited global resources, and compared to most other halides and sodium hydroxide they are less corrosive and not negatively affected by CO2 contaminations.

Molecular bonds

Storing energy in molecular bonds is being investigated. Energy densities equivalent to lithium-ion batteries have been achieved.