A transition metal oxo complex is a coordination complex containing an oxo ligand. Formally O2-, an oxo ligand can be bound to one or more metal centers, i.e. it can exist as a terminal or as bridging ligands. Oxo ligands stabilize high oxidation states of a metal. Oxo ligands are pervasive, comprising the great majority of the Earth's crust. This article concerns a subset of oxides, molecular derivatives. They are also found in several metalloenzymes, e.g. in the molybdenum cofactor and in many iron-containing enzymes. One of the earliest synthetic compounds to incorporate an oxo ligand is sodium ferrate circa 1702.
A common reaction exhibited by metal-oxo compounds is olation, the condensation process that converts low molecular weight oxides to polymers with M-O-M linkages. Olation often begins with the deprotonation of a metal-hydroxo complex. It is the basis for mineralization and the precipitation of metal oxides.
Oxygen-atom transfer
Metal oxo complexes are intermediates in many metal-catalyzed oxidation reactions. Oxygen-atom transfer is common reaction of particular interest in organic chemistry and biochemistry. Some metal-oxos are capable of transferring their oxo ligand to organic substrates. One such example of this type of reactivity is from and enzyme super-family Molybdenum oxotransferase. In water oxidation catalysis, metal oxo complexes are intermediates in the conversion of water to O2.
Hydrogen-atom abstraction
Transition metal-oxo's are also capable of abstracting strong C–H, N–H, and O–H bonds. Cytochrome P450 contains a high-valent iron-oxo which is capable of abstracting hydrogen atoms from strong C–H bonds.
Iron-oxo compounds are intermediates in many biological oxidations:
Alpha-ketoglutarate-dependent hydroxylases activate O2 by oxidative decarboxylation of ketoglutarate, generating Fe=O centers, i.e. ferryl, that hydroxylate a variety of hydrocarbon substrates.
Cytochrome P450 enzymes, use a hemecofactor, insert ferryl oxygen into saturated C–H bonds, epoxidize olefins, and oxidize aromatic groups.
Methane monooxygenase oxidizes methane to methanol via oxygen atom transfer from an iron-oxo intermediate at its non-heme di-iron center. Much effort is aimed at reproducing reactions with synthetic catalysts.
Molybdenum/tungsten oxo species
The oxo ligand is nearly ubiquitous in molybdenum and tungsten chemistry, appearing in the ores containing these elements, throughout their synthetic chemistry, and also in their biological role. The biologically transported species and starting point for biosynthesis is generally accepted to be oxometallates MoO4−2 or WO4−2. All Mo/W enzymes, again except nitrogenase, are bound to one or more molybdopterinprosthetic group. The Mo/W centers generally cycle between hexavalent and tetravalent states. Although there is some variation among these enzymes, members from all three families involve oxygen atom transfer between the Mo/W center and the substrate. Representative reactions from each of the three structural classes are:
The three different classes of molybdenum cofactors are shown in the Figure. The biological use of tungsten mirrors that of molybdenum.
Oxygen-evolving complex
The active site for the oxygen-evolving complex of photosystem II is a Mn4O5Ca centre with several bridging oxo ligands that participate in the oxidation of water to molecular oxygen. The OEC is proposed to utilize a terminal oxo intermediate as a part of the water oxidation reaction. This complex is responsible for the production of nearly all of earth's molecular oxygen. This key link in the oxygen cycle is necessary for much of the biodiversity present on earth.
The "oxo wall"
The term "oxo wall" is a theory used to describe the fact that no terminal oxo complexes are known for metal centers with octahedral symmetry and d-electron counts beyond 5. Oxo compounds for the vanadium through iron triads are well known, whereas terminal oxo compounds for metals in the cobalt through zinc triads are rare and invariably feature metals with coordination numbers lower than 6. This trend holds for other metal-ligand multiple bonds. Claimed exceptions to this rule have been retracted. Terminal oxo ligands are also rather rare for the titanium triad, especially zirconium and hafnium and is unknown for group 3 metals. The iridium oxo complex Ir3 may appear to be an exception to the oxo-wall, but it is not because the complex is non-octahedral. The trigonal symmetry reorders the metal d-orbitals below the degenerate MO pi* pair. In three-fold symmetric complexes, multiple MO bonding is allowed for as many as 7 d-electrons.