Triphenylene


In chemistry, the organic compound triphenylene is a flat polycyclic aromatic hydrocarbon consisting of four fused benzene rings. Triphenylene can be isolated from coal tar. It is also made synthetically by synthesis and trimerization of benzyne. One molecule of triphenylene has delocalized 18-π-electron systems based on a planar structure. It has the molecular formula.
Triphenylene is a fully benzenoid PAH, meaning its structure is composed only of full benzene rings interconnected by carbon–carbon single bonds. The three benzene rings can be drawn as the three outer rings, with the central ring formed by one face of each and the three carbon–carbon single bonds.
Being a fully benzenoid PAH means that triphenylene is much more resonance stable than its isomers chrysene, benzanthracene|benzanthracene, benzophenanthrene|benzophenanthrene, and tetracene. This makes it much more difficult to hydrogenate to the saturated hydrocarbon.
In light of these characteristics, triphenylene may have uses in optics and electronics. Triphenylene is a disc-shaped molecule with a planar structure and three-fold rotation axes. Consisting of colorless needle-like crystals, it emits bluish purple fluorescence by UV irradiation.
In terms of its crystallographic point group, the symmetry of triphenylene is classified as D3h in Schoenflies notation. Because of these characteristics, six-fold alkyloxy- or alkylthiol-substituted triphenylenes can be used as a discotic mesogen in liquid crystalline materials.