V6 engine


A V6 engine is a six-cylinder piston engine where the cylinders share a common crankshaft and are arranged in a V configuration.
The first V6 prototype engine was produced in 1906, however it took until 1950 for the first automotive V6 engine to reach production. In the past 20 to 30 years, the V6 layout has become the most common layout for six-cylinder automotive engines.

Design

Due to their short length, V6 engines are often used as the larger engine option for vehicles which are otherwise produced with inline-four engines, especially in transverse engine vehicles. A downside for luxury cars is that V6 engines produce more vibrations than straight-six engines. Some sports cars use flat-six engines instead of V6 engines, due to their lower centre of gravity.
The displacement of modern V6 engines is typically between, though larger and smaller examples have been produced, such as the V6 engines used in the 1991-1998 Mazda MX3, and the 1999-2005 Rover 45.

Balance and smoothness

All V6 engines— regardless of the V-angle between the cylinder banks— are subject to a primary imbalance caused by each bank consisting of an inline-three engine, due to the odd number of cylinders in each bank. Straight-six engines and flat-six engines do not experience this imbalance. To reduce the vibrations caused by this imbalance, some V6 engines use counterweights on the crankshaft and/or a counter-rotating balance shaft.
Six-cylinder designs have less pulsation in the power delivery than four-cylinder engines, due to the overlap in the power strokes of the six-cylinder engine. In a four-cylinder engine, only one piston is on a power stroke at any given time. Each piston comes to a complete stop and reverses direction before the next one starts its power stroke, which results in a gap between power strokes and annoying harshness, especially at lower engine speeds. In a six-cylinder engine with an even firing interval, the next piston starts its power stroke 60° before the previous one finishes, which results in smoother delivery of power to the flywheel.
Comparing engines on a dynamometer, a V6 engine shows instantaneous torque peaks of 150% above mean torque and valleys of 125% below mean torque, with a small amount of negative torque between power strokes. In the case of a four-cylinder engine, the peaks are nearly 300% above mean torque and valleys of 200% below mean torque, with 100% negative torque being delivered between strokes. However, a V6 with an uneven firing interval shows large torque variations of 200% above and 175% below mean torque.

Cylinder bank angles

10 to 15 degrees

From 1991-present, Volkswagen has produced narrow angle VR6 engines with V-angles of 10.5 and 15 degrees. These engines use a single cylinder head shared by both banks of cylinders, in a design similar to the 1922-1976 Lancia V4 engine. The VR6 engines were used in transverse engine front-wheel drive cars which were originally designed for inline-four engines. Due to the minimal extra length and width of the VR6 engine, it could be fitted to the engine compartments relatively easily, in order to provide a displacement increase of 50 percent.
Since there is no room in the V between the cylinder banks for an intake system, all the intakes are on one side of the engine, and all the exhausts are on the other side. It uses a firing order of 1-5-3-6-2-4, rather than the common V6 firing order of 1-2-3-4-5-6 or 1-6-5-4-3-2.

60 degrees

A V-angle of 60 degrees is the optimal configuration for V6 engines regarding engine balance. When individual crank pins are used for each cylinder, an even firing interval of 120 degrees can be used. This firing interval is a multiple of the 60 degree V-angle, therefore the combustion forces can be balanced through use of the appropriate firing order.
The inline-three engine that forms each cylinder bank, however, produces unbalanced rotating and reciprocal forces. These forces remain unbalanced in all V6 engines, often leading to the use of a balance shaft to reduce the vibration.
The 1950 Lancia V6 engine was pioneering in its use of a six-throw crankshaft in order to reduce vibration. More recent designs often use a three-throw crankshaft with 'flying arms' between the crankpins. The flying arms allow an even firing interval of 120 degrees to be achieved, and also used as balancing masses for the crankshaft. Combined with a pair of heavy counterweights on the crankshaft ends, flying arms can eliminate the primary imbalance and reduce the vibration from the secondary imbalance to acceptable levels. The engine mounts can be designed to absorb these remaining vibrations.
A 60 degree V-angle results in a narrower engine overall than V6 engines with larger V-angles. This angle often results in the overall engine size being a cube shape, making the engine easier to fit either longitudinally or transversely in the engine compartment.

90 degrees

Many manufacturers, particularly American ones, built V6 engines with a V-angle of 90 degrees based on their existing 90-degree V8 engines. Such configurations were easy to design by removing two cylinders and replacing the V8 engine's four-throw crankshaft with a three-throw crankshaft. This reduced design costs, allowed the new V6 to share components with the V8 engine, and sometimes allowed manufacturers to build the V6 and V8 engines on the same production line.
The downsides of a 90 degree design are a wider engine which is more vibration-prone than a 60 degree V6. The initial 90 degree V6 engines had three shared crankpins arranged at 120 degrees from each other, due to their origins from the V8 engines. This resulted in an uneven firing order, with half of the cylinders using a firing interval of 90 degrees and other half using an interval of 150 degrees. The uneven firing intervals resulted in rough-running engines with unpleasant harmonic vibrations at certain engine speeds.
Several modern 90 degree V6 engines reduce the vibrations using split crankpins offset by 30 degrees between piston pairs, which creates an even firing interval of 120 degrees for all cylinders. For example, the 1977 Buick 231 "even-fire" V6 engine was an upgraded version of the Buick Fireball engine with a split-pin crankshaft to reduce vibration by achieving an even firing order. Such a 'split' crankpin is weaker than a straight one, but modern metallurgical techniques can produce a crankshaft that is adequately strong.
A balance shaft and/or crankshaft counterweights can be used to reduce vibrations in 90 degree V6 engines.

120 degrees

At first glance, 120 degrees might seem to be the optimal V-angle for a V6 engine, since pairs of pistons in alternate banks can share crank pins in a three-throw crankshaft and the combustion forces are balanced by the firing interval being equal to the angle between the cylinder banks. A 120 degree configuration, unlike the 60 degree or 90 degree configurations, would not require crankshafts with flying arms, split crankpins, or seven main bearings to be even-firing. However, the primary imbalance caused by odd number of cylinders in each bank still remains in a 120 degree V6 engine. This differs from the perfect balance achieved by a 90 degree V8 engine with a commonly used crossplane crankshaft, because the inline-four engine in each bank of the V8 engine does not have this primary imbalance.
A 120 degree design also results in a large width for the engine, being only slightly narrower than a flat-six engine. Therefore the flat-six engine has been used in various automobiles, whereas use of the 120 degree V6 engine has been limited to a few truck and racing car engines.

Other angles

Other angle V6 engines are possible but can suffer from severe vibration problems unless very carefully designed. Notable V-angles include:
In 1906, a few years after V4 engines and V8 engines had come into existence, the first known V6 engine was built. This V6 engine was a single prototype automotive engine built by Marmon Motor Car Company in the United States. The engine did not reach production. Similarly, a single prototype engine was produced by Buick in 1918.
The first V6 engine to reach production was built from 1908 to 1913 by the Deutz Gasmotoren Fabrik in Germany. These V6 engines were used as the generator for gasoline-electric railway engines.
The Lancia V6 engine was the first series production V6 automobile engine, when it was introduced in the 1950 Lancia Aurelia. Lancia had been producing V4 engines for approximately 30 years, and one of the key goals was to reduce the vibrations compared with the V4 engine. The V6 engine used a 60 degree V-angle and six crankpins, resulting in an evenly-spaced firing order to reduce vibrations.
Other manufacturers took note and soon other V6 engines were designed. In 1959, the GMC V6 engine was introduced in the form of a 60-degree petrol engine used in pickup trucks and carryalls. The Buick V6 engine was introduced in 1962 and was based on Buick's contemporary V8 engine. It therefore used a 90-degree V-angle and uneven firing order, resulting in high vibrations.
Ford introduced its European road car engines in 1965 with the German division's Cologne V6, and the Ford Essex V6 engine, introduced by Ford's United Kingdom division in 1966; both engines used a 60-degree V-angle. The 1967 Dino 206 GT was Ferrari's first V6 road car, which had a 65-degree V-angle.
The 1979-2005 Alfa Romeo V6 engine was introduced in the Alfa Romeo Alfa 6 luxury sedan and later used in many other Alfa Romeo models. This engine used a 60 degree V-angle, an all-aluminium construction and two valves per cylinder. A turbocharged version was introduced in 1991 and a four valve per cylinder version was introduced in 1997. Also in 1970, the Citroën SM grand tourer was introduced, powered by a 90-degree V6 built by Maserati. The General Motors 90° V6 engine was introduced in 1978 and produced for 36 years.
The first mass-produced Japanese V6 engine was the Nissan VG engine, a 60-degree design which was produced from 1983-2004. The Honda C engine was introduced in 1985, followed by the Mitsubishi 6G7 engine in 1986, the Toyota VZ engine in 1988 and the Mazda K engine in 1991.
German luxury car manufacturers were relatively slow to adopt V6 engines, with the first being the 90-degree SOHC engine introduced in the 1990 Audi 100.
By the mid-1990s, the V6 layout was the most common configuration for six-cylinder automotive engines, with V6 engines having replaced most of the straight-six engines.

Motor racing

The Lancia Aurelia was also successful in motor racing. Four of the Aurelia B20 Coupes were entered in the 1951 Mille Miglia with the best placed cars finishing second and fourth. A tuned version of the Lancia V6 engine producing was used in the Lancia D24. The D24 competed in sports car racing and won the 1953 Carrera Panamericana with Juan Manuel Fangio at the wheel.
The initial version of the Ferrari Dino engine was a racing engine used in Formula Two racing in the 1957 season. It had a V-angle of 65 degrees and dual overhead camshafts. The Dino V6 underwent several evolutions, including a version used in the 1958 Ferrari 246 Formula One racing car. A few years later, the 1961-1964 Ferrari 156 Formula One car used a new V6 engine with a V-angle of 120 degrees and a displacement of. This engine was shorter and lighter than the Ferrari Dino engine, and the simplicity and low center of gravity of the engine was an advantage in racing. It won a large number of races between and. However, Ferrari's founder had a personal dislike of the 120 degree layout, preferring a 65 degree layout, and after that time it was replaced by other engines. The Dino engine was also used in the Lancia Stratos, which was a highly successful rally car that won the World Rally Championship in 1974, 1975 and 1976.
A notable racing use of the Alfa Romeo V6 engine was the Alfa Romeo 155 V6 TI, designed for the 1993 DTM season and equipped with a engine making a peak power of at 11,900 rpm.
The Renault-Gordini CH1 was a 90 degree V6 engine with an iron block. It was introduced in the 1973 Alpine -Renault A440 sportscar racing car. This engine won the European 2 L prototype championship in 1974 and several European Formula Two Championships. A turbocharged version was used in the Renault Alpine A442, which won the 24 Hours of Le Mans in 1978.
A turbocharged version of the Renault-Gordini CH1 engine was introduced in the 1977 Renault RS01 Formula One car. Renault struggled with reliability issues in 1977 and 1978, however the 1979 season saw some good results at a few races. In 1981, the Ferrari 126C Formula One car used a turbocharged V6 engine. Ferrari won the Formula One constructors' championship with turbocharged V6 engines in 1982 and 1983. Initial versions used a 120 degree V-angle, before switching to a 90 degree V-angle for the 1987 Ferrari F1/87 racing car. Other successful turbocharged V6 Formula One cars in the era of 1982-1988 were the McLaren MP4/2, McLaren MP4/3, McLaren MP4/4, Williams FW10, Williams FW11, Lotus 95T, Lotus 98T, Lotus 99T and Lotus 100T.
The Nissan GTP ZX-Turbo and Nissan NPT-90 competed in the IMSA sports car prototype category from 1985-1994 and used a turbocharged V6 engine loosely based on the Nissan VG30ET production car engine. The Nissan 300ZX used a similar engine to compete in the 1996-1997 All Japan Grand Touring Car Championship.
Downsizing to V6 engines in open-wheeler racing became more common since the early 2010s:
V6 engines are popular powerplants in medium to large outboard motors.

Use in motorcycles

The Laverda V6 was a racing motorcycle which was unveiled at the 1977 Milan show. It entered the 1978 Bol d'Or 24 hour endurance race, however it retired with mechanical issues after approximately 8 hours.
Horex has produced road motorcycles with VR6 engines since 2012.