Wendelstein 7-X


The Wendelstein 7-X reactor is an experimental stellarator built in Greifswald, Germany, by the Max Planck Institute of Plasma Physics, and completed in October 2015. Its purpose is to advance stellarator technology, though this experimental reactor will not produce electricity, it is used to evaluate the main components of a future fusion power plant; it was developed based on the predecessor Wendelstein 7-AS experimental reactor.
, the Wendelstein 7-X reactor is the largest stellarator device. It has been anticipated to achieve operations of up to approximately 30 minutes of continuous plasma discharge in 2021, thus demonstrating an essential feature of a future fusion power plant — continuous operation.
The name of the project, referring to the mountain Wendelstein in Bavaria, was decided at the end of the 1950s, referencing the preceding project from Princeton University under the name Project Matterhorn.
The research facility is an independent partner project with the University of Greifswald.

Design and main components

The Wendelstein 7-X device is based on a five field-period Helias configuration. It is mainly a toroid, consisting of 50 non-planar and 20 planar superconducting magnetic coils, 3.5 m high, which induce a magnetic field that prevents the plasma from colliding with the reactor walls. The 50 non-planar coils are used for adjusting the magnetic field. It aims for a plasma density of 3×1020 particles per cubic metre, and a plasma temperature of 60–130 megakelvin.
The main components are the magnetic coils, cryostat, plasma vessel, divertor and heating systems.
The coils are arranged around a heat insulating cladding with a diameter of 16 meters, called the cryostat. A cooling device produces enough liquid helium to cool down the magnets and their enclosure to superconductivity temperature. The coils will carry 12.8 kA current and create a field of up to 3 teslas.
The plasma vessel, built of 20 parts, is on the inside, adjusted to the complex shape of the magnetic field. It has 254 ports for plasma heating and observation diagnostics. The whole plant is built of five near-identical modules, which were assembled in the experiment hall.
The heating system includes 10 megawatts of microwaves for electron cyclotron resonance heating which can operate continuously, and can deliver 80 MJ in the operation phase 1.2. For operational phase 2, after completion of the full armor/water-cooling, up to 8 megawatts of neutral beam injection will also be available for 10 seconds,. An ion cyclotron resonance heating system will become available for physics operation in OP1.2.
A system of sensors and probes based on a variety of complementary technologies will measure key properties of the plasma, including the profiles of the electron density and of the electron and ion temperature, as well as the profiles of important plasma impurities and of the radial electric field resulting from electron and ion particle transport.

History

The German funding arrangement for the project was negotiated in 1994, establishing the Greifswald Branch Institute of the IPP in the north-eastern corner of the recently integrated East Germany. Its new building was completed in 2000. Construction of the stellarator was originally expected to reach completion in 2006. Assembly began in April 2005. Problems with the coils took about 3 years to fix. The schedule slipped into late 2015.
A three-laboratory American consortium became a partner in the project, paying €6.8 million of the eventual total cost of €1.06 billion. In 2012, Princeton University and the Max Planck Society announced a new joint research center in plasma physics, to include research on W7-X.
The end of the construction phase, which required more than 1 million assembly hours, was officially marked by an inauguration ceremony on 20 May 2014. After a period of vessel leak-checking, beginning in the summer of 2014, the cryostat was evacuated, and magnet testing was completed in July 2015.
Operational phase 1 began 10 December 2015. On that day the reactor successfully produced helium plasma for about 0.1 s. For this initial test with about 1 mg of helium gas injected into the evacuated plasma vessel, microwave heating was applied for a short 1.3 MW pulse.
The aim for the OP 1.1 was to conduct integrated testing of the most important systems as quickly as possible and to gain first experience with the physics of the machine.
More than 300 discharges with helium were done in December and January with gradually increasing temperatures finally reaching six million degrees Celsius, to clean the vacuum vessel walls and test the plasma diagnostic systems. Then, on 3 February 2016, production of the first hydrogen plasma initiated the science program. The highest temperature plasmas were produced by four-megawatt microwave heater pulses lasting one second; plasma electron temperatures reached 100 MK, while ion temperatures reached 10 MK. More than 2,000 pulses were conducted before shutdown.
Such tests were planned to continue for about a month, followed by a scheduled shut-down to open the vacuum vessel and line it with protective carbon tiles and install a "divertor" for removing impurities and heat from the plasma. The science program continued while gradually increasing discharge power and duration. The special magnetic field topology was confirmed in 2016.
Operational phase 1 concluded 10 March 2016 and an upgrade phase began.
Operational phase 1 continued in 2017 to test the divertor.
Operational phase 2 is planned for the end of 2021 to test the cooled divertor.
In June 2018 a record ion temperature of about 40 million degrees, a density of 0.8 x 1020 particles/m3, and a confinement time of 0.2 seconds yielded a record fusion product of 6 x 1026 degrees-seconds per cubic metre.
During the last experiments of 2018, the density reached 2x1020 particles/m3 at a temperature of 20 million degrees. With good plasma values, long lasting plasmas with long discharge times of 100 seconds were obtained. Energy content exceeded 1 megajoule.

Timeline

Financing

Financial support for the project is about 80% from Germany and about 20% from the European Union. 90% of German funding comes from the federal government and 10% from the state government of Mecklenburg-Vorpommern. The total investment for the stellarator itself over 1997–2014 amounted to €370 million, while the total cost for the IPP site in Greifswald including investment plus operating costs amounted to €1.06 billion for that 18-year period. This exceeded the original budget estimate, mainly because the initial development phase was longer than expected, doubling the personnel costs.
In July 2011, the President of the Max Planck Society, Peter Gruss, announced that the United States would contribute $7.5 million under the program "Innovative Approaches to Fusion" of the United States Department of Energy.

Collaborating institutes

European Union