XNU


XNU is the computer operating system kernel developed at Apple Inc. since December 1996 for use in the macOS operating system and released as free and open-source software as part of the Darwin OS, which is the basis for the Apple TV Software, iOS, iPadOS, watchOS, and tvOS OSes. XNU is an abbreviation of X is Not Unix.
Originally developed by NeXT for the NeXTSTEP operating system, XNU was a hybrid kernel combining version 2.5 of the Mach kernel developed at Carnegie Mellon University with components from 4.3BSD and an application programming interface in Objective-C for writing drivers named Driver Kit.
After Apple acquired NeXT, the Mach component was upgraded to OSFMK 7.3 from OSF, the BSD components were upgraded with code from the FreeBSD project, and the Driver Kit was replaced with a C++ API for writing drivers named I/O Kit.

Kernel design

XNU is a hybrid kernel, containing features of both monolithic kernels and microkernels, attempting to make the best use of both technologies, such as the message passing ability of microkernels enabling greater modularity and larger portions of the OS to benefit from memory protection, and retaining the speed of monolithic kernels for some critical tasks.
As of 2007, XNU runs on ARM, IA-32, and x86-64 processors, both one processor and symmetric multiprocessing models. PowerPC support is removed as of version 10; i.e., Mac OS X 10.6.

Mach

The basis of the XNU kernel is a heavily modified Open Software Foundation Mach kernel 7.3. As such, it is able to run the core of an operating system as separated processes, which allows a great flexibility, but this often reduces performance because of time-consuming kernel/user mode context switches and overhead stemming from mapping or copying messages between the address spaces of the kernel and that of the service daemons. With macOS, the designers have attempted to streamline some tasks and thus BSD functions were built into the core with Mach. The result is a heavily modified OSFMK 7.3 kernel, Apple licensed OSFMK 7.3, which is a microkernel, from the OSF. OSFMK 7.3 includes applicable code from the University of Utah Mach 4 kernel and from the many Mach 3.0 variants forked from the original Carnegie Mellon University Mach 3.0 microkernel.

BSD

The Berkeley Software Distribution part of the kernel provides the Portable Operating System Interface application programming interface, the Unix process model atop Mach tasks, basic security policies, user and group ids, permissions, the network protocol stack, the virtual file system code, several local file systems such as Hierarchical File System and Apple File System, the Network File System client and server, cryptographic framework, UNIX System V inter-process communication, audit subsystem, mandatory access control, and some of the locking primitives. The BSD code present in XNU came from the FreeBSD kernel. Although much of it has been significantly modified, code sharing still occurs between Apple and the FreeBSD Project as of 2009.

K32/K64

XNU in Mac OS X Snow Leopard, v10.6, comes in two varieties, a 32-bit version called K32 and a 64-bit version called K64. K32 can run 64-bit applications in userland. What was new in Mac OS X 10.6 was the ability to run XNU in 64-bit kernel space. K32 was the default kernel for 10.6 Server when used on all machines except Mac Pro and Xserve models from 2008 onwards and can run 64-bit applications. K64 has several benefits compared to K32:
Booting while holding down 6 and 4 forces the machine to boot K64 on machines supporting 64-bit kernels. K64 will run 32-bit applications but it will not run 32-bit kernel extensions, so these must be ported to K64 to be able to load.
XNU in Mac OS X Lion, v10.7, and later only provides a 64-bit kernel.

I/O Kit

I/O Kit is the device driver framework, written in a subset of C++ based on Embedded C++. Using its object-oriented design, features common to any class of driver are provided within the framework, helping device drivers be written in less time and code. The I/O Kit is multi-threaded, symmetric multiprocessing -safe, and allows for hot-pluggable devices and automatic, dynamic device configuration.
Many drivers can be written to run from user space, which further enhances the stability of the system. If a user-space driver crashes, it will not crash the kernel. However, if a kernel-space driver crashes it will crash the kernel. Examples of kernel-space drivers include disk adapter and network adapter drivers, graphics drivers, drivers for Universal Serial Bus and FireWire host controllers, and drivers for virtual machine software such as VirtualBox, Parallels Desktop for Mac, and VMware Fusion.