An agar plate is a Petri dish that contains agar as a solid growth medium plus nutrients, used to culturemicroorganisms. Sometimes selective compounds are added to influence growth, such as antibiotics. Individual microorganisms placed on the plate will grow into individual colonies, each a clone genetically identical to the individual ancestor organism. Thus, the plate can be used either to estimate the concentration of organisms in a liquid culture or a suitable dilution of that culture using a colony counter, or to generate genetically pure cultures from a mixed culture of genetically different organisms. Several methods are available to plate out cells. One technique is known as "streaking". In this technique, a drop of the culture on the end of a thin, sterile loop of wire, sometimes known as an inoculator, is streaked across the surface of the agar leaving organisms behind, a higher number at the beginning of the streak and a lower number at the end. At some point during a successful "streak", the number of organisms deposited will be such that distinct individual colonies will grow in that area which may be removed for further culturing, using another sterile loop. It is crucial to work sterile to prevent contamination on the plates. Another way of plating organisms, next to streaking, on agar plates is the spot analysis. This type of analysis is often used to check the viability of cells and performed with pinners. A third used technique is the use of sterile glass beads to plate out cells. In this technique cells are grown in a liquid culture of which a small volume is pipetted on the agar plate and then spread out with the beads. Replica plating is another technique in order to plate out cells on agar plates. These four techniques are the most common, but others are also possible. It is crucial to work in a sterile manner in order to prevent contamination on the agar plates. Plating is thus often done in a laminar flow cabinet or on the working bench next to a bunsen burner.
History
In 1881, Fanny Hesse, who was working as a technician for her husband Walther Hesse in the laboratory of Robert Koch, suggested agar as an effective setting agent, since it had been commonplace in jam making for some time.
Types
Like other growth media, the formulations of agar used in plates may be classified as either "defined" or "undefined"; a defined medium is synthesized from individual chemicals required by the organism so the exact molecular composition is known, whereas an undefined medium is made from natural products such as yeast extract, where the precise composition is unknown. Agar plates may be formulated as either permissive, with the intent of allowing the growth of whatever organisms are present, or restrictive or selective, with the intent of only allowing growth a particular subset of those organisms. This may take the form of a nutritional requirement, for instance providing a particular compound such as lactose as the only source of carbon and thereby selecting only organisms which can metabolize that compound, or by including a particular antibiotic or other substance to select only organisms which are resistant to that substance. This correlates to some degree with defined and undefined media; undefined media, made from natural products and containing an unknown combination of very many organic molecules, is typically more permissive in terms of supplying the needs of a wider variety of organisms, while defined media can be precisely tailored to select organisms with specific properties. Agar plates may also be indicator plates, in which the organisms are not selected on the basis of growth, but are instead distinguished by a color change in some colonies, typically caused by the action of an enzyme on some compound added to the medium. The plates are incubated for 12 hours up to several days depending on the test that is performed. Some commonly used agar plate types are: on an agar plate are used to diagnose infection. On the left is a positive Staphylococcus infection, on the right a positive Streptococcus culture.
Blood agar
Blood agar plate
Blood agar plates contain mammalian blood, typically at a concentration of 5–10%. BAPs are enriched, differential media used to isolate fastidious organisms and detect hemolytic activity. β-Hemolytic activity will show lysis and complete digestion of red blood cell contents surrounding a colony. Examples include Streptococcus haemolyticus. α-Hemolysis will only cause partial lysis of the red blood cells and will appear green or brown, due to the conversion of hemoglobin to methemoglobin. An example of this would be Streptococcus viridans. γ-Hemolysis is the term referring to a lack of hemolytic activity. BAPs also contain meat extract, tryptone, sodium chloride, and agar.
Chocolate agar
a type of blood agar plate in which the blood cells have been lysed by heating the cells to 56 °C. It is used for growing fastidious respiratory bacteria, such as Haemophilus influenzae. No chocolate is actually contained in the plate; it is named for the coloration only.
Horse blood agar
is a type of blood-enriched microbiological culture media. As it is enriched, it allows the growth of certain fastidious bacteria, and allows indication of haemolytic activity in these bacterial cultures.
enhances growth of Vibrio spp., including Vibrio cholerae.
General bacterial media
Bile esculin agar is used for the isolation of Enterococcus and group D Streptococcus species
CLED agar – cysteine, lactose, electrolyte-deficient agar is used to isolate and differentiate urinary tract bacteria, since it inhibits Proteus species swarming and can differentiate between lactose fermenters and nonfermenters.
Granada medium is used to isolate and differentiate group B Streptococcus, Streptococcus agalactiae from clinical samples. It grows in Granada medium as red colonies and most of accompanying bacteria are inhibited.
Hektoen enteric agar is designed to isolate and recover fecal bacteria of the family Enterobacteriaceae. It is particularly useful in isolating Salmonella and Shigella.
Mannitol salt agar is also a selective and differential medium. The mannitol indicates organisms that ferment mannitol: mannitol fermentation produces lactic acid, lowering the pH and turning the plate yellow. The salt is to select for halophiles; organisms that cannot withstand a high salt content are unable to grow well.
growing in axenic cultures, each of which is a culture of one selected organism and is free of all other organisms, enabling study of the cultured organism in isolation growing on potato dextrose agar
Nutrient agar is usually used for growth of nonfastidious organisms and observation of pigment production. It is safe to use in school science laboratories because it does not selectively grow pathogenic bacteria.
Önöz agar allows more rapid bacteriological diagnosis, as
Salmonella and Shigella colonies can be clearly and reliably differentiated from other Enterobacteriaceae. The yields of Salmonella from stool samples obtained, when using this medium, are higher than those obtained with LEIFSON agar or Salmonella–Shigella agar.
Staphylococcus species while inhibiting Gram-negative bacilli.
R2A agar, a nonspecific medium, imitates water, so is used for water analysis.
Tryptic soy agar is a general-purpose medium produced by enzymatic digestion of soybean meal and casein. It is frequently the base medium of other agar types; for example, blood agar plates are made by enriching TSA plates with blood. TSA plates support growth of many semifastidious bacteria, including some species of
Xylose-lysine-deoxycholate agar is used for the culture of stool samples and contains two indicators. It is formulated to inhibit Gram-positive bacteria, while the growth of Gram-negative bacilli is encouraged. The colonies of lactose fermenters appear yellow. It is also used to culture possible
Salmonella that may be present in a food sample. Most Salmonella colonies produce a black centre on it.
Sabouraud agar is used to culture fungi and has a low pH that inhibits the growth of most bacteria; it also contains the antibiotic gentamicin to specifically inhibit the growth of Gram-negative bacteria.
Malt extract agar has a high content of peptone and is acidic. It is essentially used in the isolation of fungal microorganisms.
Moss media
Knop agar is used to axenically culture protonema and whole moss plants, such as those of Physcomitrella patens, a model organism.
Yeast media
YEPD media is often used as a general growth media for yeasts like Saccharomyces cerevisiae and Candida albicans
Sporulation medium is medium used when spores have to be formed. It can also be used when working with fungi or bacteria depending on whether or not the strain is capable of forming spores.