Designing CPUs that perform tasks efficiently without overheating is a major consideration of nearly all CPU manufacturers to date. Some CPU implementations use very little power; for example, the CPUs in mobile phones often use just a few watts of electricity, while some microcontrollers used in embedded systems may consume only a few milliwatts or even as little as a few microwatts. In comparison, CPUs in general-purpose personal computers, such as desktops and laptops, dissipate significantly more power because of their higher complexity and speed. These microelectronic CPUs may consume power in the order of tens of watts, or even hundreds of watts. Historically, early CPUs implemented with vacuum tubes consumed power on the order of many kilowatts. CPUs for desktop computers typically use a significant portion of the power consumed by the computer. Other major uses include fast video cards, which contain graphics processing units, and power supplies. In laptops, the LCD's backlight also uses a significant portion of overall power. While energy-saving features have been instituted in personal computers for when they are idle, the overall consumption of today's high-performance CPUs is considerable. This is in strong contrast with the much lower energy consumption of CPUs designed for low-power devices. One such CPU, the Intel XScale, can run at 600 MHz consuming under 1 W of power, whereas Intel x86 PC processors in the same performance bracket consume a few times more energy. There are some engineering reasons for this pattern.
For a given device, operating at a higher clock rate may require more power. Reducing the clock rate or undervolting usually reduces energy consumption; it is also possible to undervolt the microprocessor while keeping the clock rate the same.
New features generally require more transistors, each of which uses power. Turning unused areas off saves energy, such as through clock gating.
As a processor model's design matures, smaller transistors, lower-voltage structures, and design experience may reduce energy consumption.
Processor manufacturers usually release two power consumption numbers for a CPU:
typical thermal power, which is measured under normal load.
maximum thermal power, which is measured under a worst-case load
For example, the Pentium 4 2.8 GHz has 68.4 W typical thermal power and 85 W maximum thermal power. When the CPU is idle, it will draw far less than the typical thermal power. Datasheets normally contain the thermal design power, which is the maximum amount of heat generated by the CPU, which the cooling system in a computer is required to dissipate. Both Intel and Advanced Micro Devices have defined TDP as the maximum heat generation for thermally significant periods, while running worst-case non-synthetic workloads; thus, TDP is not reflecting the actual maximum power of the processor. This ensures the computer will be able to handle essentially all applications without exceeding its thermal envelope, or requiring a cooling system for the maximum theoretical power. In many applications, the CPU and other components are idle much of the time, so idle power contributes significantly to overall system power usage. When the CPU uses power management features to reduce energy use, other components, such as the motherboard and chipset, take up a larger proportion of the computer's energy. In applications where the computer is often heavily loaded, such as scientific computing, performance per watt becomes more significant.
Reduction
Power consumption can be reduced in several ways, including the following:
Capacitance reduction increasingly integrated circuits that replace PCB traces between two chips with relatively lower-capacitance on-chip metal interconnect between two sections of a single integrated chip; low-k dielectric, etc.
Techniques such as clock gating and globally asynchronous locally synchronous, which can be thought of as reducing the capacitance switched on each clock tick, or can be thought of as locally reducing the clock frequency in some sections of the chip
Optimizing machine code - by implementing compiler optimizations that schedules clusters of instructions using common components, the CPU power used to run an application can be significantly reduced.
Historically, processor manufacturers consistently delivered increases in clock rates and instruction-level parallelism, so that single-threaded code executed faster on newer processors with no modification. More recently, in order to manage CPU power dissipation, processor makers favor multi-core chip designs, thus software needs to be written in a multi-threaded or multi-process manner to take full advantage of such hardware. Many multi-threaded development paradigms introduce overhead, and will not see a linear increase in speed when compared to the number of processors. This is particularly true while accessing shared or dependent resources, due to lock contention. This effect becomes more noticeable as the number of processors increases. Recently, IBM has been exploring ways to distribute computing power more efficiently by mimicking the distributional properties of the human brain.
CPU overheating
Processor can be damaged from overheating, but vendors protect processors with operational safeguards such as throttling and automatic shutdown. When a core exceeds the set throttle temperature, processors can reduce power to maintain a safe temperature level and if the processor is unable to maintain a safe operating temperature through throttling actions, it will automatically shut down to prevent permanent damage.