Coxeter–Dynkin diagram
In geometry, a Coxeter–Dynkin diagram is a graph with numerically labeled edges representing the spatial relations between a collection of mirrors. It describes a kaleidoscopic construction: each graph "node" represents a mirror and the label attached to a branch encodes the dihedral angle order between two mirrors, that is, the amount by which the angle between the reflective planes can be multiplied by to get 180 degrees. An unlabeled branch implicitly represents order-3.
Each diagram represents a Coxeter group, and Coxeter groups are classified by their associated diagrams.
Dynkin diagrams are closely related objects, which differ from Coxeter diagrams in two respects: firstly, branches labeled "4" or greater are directed, while Coxeter diagrams are undirected; secondly, Dynkin diagrams must satisfy an additional restriction, namely that the only allowed branch labels are 2, 3, 4, and 6. Dynkin diagrams correspond to and are used to classify root systems and therefore semisimple Lie algebras.
Description
Branches of a Coxeter–Dynkin diagram are labeled with a rational number p, representing a dihedral angle of 180°/p. When the angle is 90° and the mirrors have no interaction, so the branch can be omitted from the diagram. If a branch is unlabeled, it is assumed to have, representing an angle of 60°. Two parallel mirrors have a branch marked with "∞". In principle, n mirrors can be represented by a complete graph in which all n( branches are drawn. In practice, nearly all interesting configurations of mirrors include a number of right angles, so the corresponding branches are omitted.Diagrams can be labeled by their graph structure. The first forms studied by Ludwig Schläfli are the orthoschemes which have linear graphs that generate regular polytopes and regular honeycombs. Plagioschemes are simplices represented by branching graphs, and cycloschemes are simplices represented by cyclic graphs.
Schläfli matrix
Every Coxeter diagram has a corresponding Schläfli matrix, with matrix elements where p is the branch order between the pairs of mirrors. As a matrix of cosines, it is also called a Gramian matrix after Jørgen Pedersen Gram. All Coxeter group Schläfli matrices are symmetric because their root vectors are normalized. It is related closely to the Cartan matrix, used in the similar but directed graph Dynkin diagrams in the limited cases of p = 2,3,4, and 6, which are NOT symmetric in general.
The determinant of the Schläfli matrix, called the Schläflian, and its sign determines whether the group is finite, [|affine], indefinite. This rule is called Schläfli's Criterion.
The eigenvalues of the Schläfli matrix determines whether a Coxeter group is of finite type, affine type, or indefinite type. The indefinite type is sometimes further subdivided, e.g. into hyperbolic and other Coxeter groups. However, there are multiple non-equivalent definitions for hyperbolic Coxeter groups. We use the following definition: A Coxeter group with connected diagram is hyperbolic if it is neither of finite nor affine type, but every proper connected subdiagram is of finite or affine type. A hyperbolic Coxeter group is compact if all subgroups are finite, and paracompact if all its subgroups are finite or affine.
Finite and affine groups are also called elliptical and parabolic respectively. Hyperbolic groups are also called Lannér, after F. Lannér who enumerated the compact hyperbolic groups in 1950, and Koszul for the paracompact groups.
Rank 2 Coxeter groups
For rank 2, the type of a Coxeter group is fully determined by the determinant of the Schläfli matrix, as it is simply the product of the eigenvalues: Finite type, affine type or hyperbolic. Coxeter uses an equivalent bracket notation which lists sequences of branch orders as a substitute for the node-branch graphic diagrams. Rational solutions ,, also exist, with gcd=1, which define overlapping fundamental domains. For example, 3/2, 4/3, 5/2, 5/3, 5/4. and 6/5.Geometric visualizations
The Coxeter–Dynkin diagram can be seen as a graphic description of the fundamental domain of mirrors. A mirror represents a hyperplane within a given dimensional spherical or Euclidean or hyperbolic space..These visualizations show the fundamental domains for 2D and 3D Euclidean groups, and 2D spherical groups. For each the Coxeter diagram can be deduced by identifying the hyperplane mirrors and labelling their connectivity, ignoring 90-degree dihedral angles.
Finite Coxeter groups
- Three different symbols are given for the same groups – as a letter/number, as a bracketed set of numbers, and as the Coxeter diagram.
- The bifurcated Dn groups is half or alternated version of the regular Cn groups.
- The bifurcated Dn and En groups are also labeled by a superscript form where a,b,c are the numbers of segments in each of the three branches.
Application with uniform polytopes
To specify the generating vertex, one or more nodes are marked with rings, meaning that the vertex is not on the mirror represented by the ringed node. A mirror is active only with respect to points not on it. A diagram needs at least one active node to represent a polytope. An unconnected diagram requires at least one active node in each subgraph.
All regular polytopes, represented by Schläfli symbol, can have their fundamental domains represented by a set of n mirrors with a related Coxeter–Dynkin diagram of a line of nodes and branches labeled by with the first node ringed.
Uniform polytopes with one ring correspond to generator points at the corners of the fundamental domain simplex. Two rings correspond to the edges of simplex and have a degree of freedom, with only the midpoint as the uniform solution for equal edge lengths. In general k-ring generator points are on -faces of the simplex, and if all the nodes are ringed, the generator point is in the interior of the simplex.
The special case of uniform polytopes with non-reflectional symmetry is represented by a secondary markup where the central dot of a ringed node is removed. These shapes are alternations of polytopes with reflective symmetry, implying that alternate nodes are deleted. The resulting polytope will have a subsymmetry of the original Coxeter group. A truncated alternation is called a snub.
- A single node represents a single mirror. This is called group A1. If ringed this creates a line segment perpendicular to the mirror, represented as.
- Two unattached nodes represent two perpendicular mirrors. If both nodes are ringed, a rectangle can be created, or a square if the point is at equal distance from both mirrors.
- Two nodes attached by an order-n branch can create an n-gon if the point is on one mirror, and a 2n-gon if the point is off both mirrors. This forms the I1 group.
- Two parallel mirrors can represent an infinite polygon I1 group, also called Ĩ1.
- Three mirrors in a triangle form images seen in a traditional kaleidoscope and can be represented by three nodes connected in a triangle. Repeating examples will have branches labeled as,,, although the last two can be drawn as a line. These will generate uniform tilings.
- Three mirrors can generate uniform polyhedra; including rational numbers gives the set of Schwarz triangles.
- Three mirrors with one perpendicular to the other two can form the uniform prisms.
There are 7 reflective uniform constructions within a general triangle, based on 7 topological generator positions within the fundamental domain. Every active mirror generates an edge, with two active mirrors have generators on the domain sides and three active mirrors has the generator in the interior. One or two degrees of freedom can be solved for a unique position for equal edge lengths of the resulting polyhedron or tiling. | Example 7 generators on octahedral symmetry, fundamental domain triangle, with 8th snub generation as an alternation |
The duals of the uniform polytopes are sometimes marked up with a perpendicular slash replacing ringed nodes, and a slash-hole for hole nodes of the snubs. For example, represents a rectangle, and represents its dual polygon, the rhombus.
Example polyhedra and tilings
For example, the B3 Coxeter group has a diagram:. This is also called octahedral symmetry.There are 7 convex uniform polyhedra that can be constructed from this symmetry group and 3 from its alternation subsymmetries, each with a uniquely marked up Coxeter–Dynkin diagram. The Wythoff symbol represents a special case of the Coxeter diagram for rank 3 graphs, with all 3 branch orders named, rather than suppressing the order 2 branches. The Wythoff symbol is able to handle the snub form, but not general alternations without all nodes ringed.
The same constructions can be made on disjointed Coxeter groups like the uniform prisms, and can be seen more clearly as tilings of dihedrons and hosohedrons on the sphere, like this × or family:
In comparison, the , family produces a parallel set of 7 uniform tilings of the Euclidean plane, and their dual tilings. There are again 3 alternations and some half symmetry version.
In the hyperbolic plane , family produces a parallel set of uniform tilings, and their dual tilings. There is only 1 alternation since all branch orders are odd. Many other hyperbolic families of uniform tilings can be seen at uniform tilings in hyperbolic plane.
Affine Coxeter groups
Families of convex uniform Euclidean tessellations are defined by the affine Coxeter groups. These groups are identical to the finite groups with the inclusion of one added node. In letter names they are given the same letter with a "~" above the letter. The index refers to the finite group, so the rank is the index plus 1.- : diagrams of this type are cycles.
- is associated with the hypercube regular tessellation family.
- related to C by one removed mirror.
- related to C by two removed mirrors.
- ,,.
- forms the regular tessellation.
- forms 30-60-90 triangle fundamental domains.
- is two parallel mirrors.
Rank | / / | ||||
2 | = | = | |||
3 | =] :File:DynkinA2Affine.svg|* | = :File:DynkinC2Affine.svg|* | = :File:DynkinG2Affine1.svg|* | ||
4 | =] :File:DynkinA3Affine.svg|* | = :File:DynkinB3Affine.svg|* | = :File:DynkinC3Affine.svg|* | = = | |
5 | =] :File:DynkinA4Affine.svg|* | = :File:DynkinB4Affine.svg|* | = :File:DynkinC4Affine.svg|* | = :File:DynkinD4Affine.svg|* | = :File:DynkinF4Affine.svg|* |
6 | =] :File:DynkinA5Affine1.svg|* | = :File:DynkinB5Affine.svg|* | = :File:DynkinC5Affine.svg|* | = :File:DynkinD5Affine.svg|* | |
7 | =] :File:AffineA6.svg|* | = | = | = | = |
8 | =] :File:AffineA7.svg|* | = :File:AffineB7.svg|* | = | = :File:AffineD7.svg|* | = :File:AffineE7.svg|* |
9 | =] :File:AffineA8.svg|* | = | = | = | = :File:E9-AffineE8.svg|* |
10 | =] :File:AffineA9.svg|* | = | = | = | - |
11 | ... | ... | ... | ... | - |
Hyperbolic Coxeter groups
There are many infinite hyperbolic Coxeter groups. Hyperbolic groups are categorized as compact or not, with compact groups having bounded fundamental domains. Compact simplex hyperbolic groups exist as rank 3 to 5. Paracompact simplex groups exist up to rank 10. Hypercompact groups have been explored but not been fully determined. In 2006, Allcock proved that there are infinitely many compact Vinberg polytopes for dimension up to 6, and infinitely many finite-volume Vinberg polytopes for dimension up to 19, so a complete enumeration is not possible. All of these fundamental reflective domains, both simplices and nonsimplices, are often called Coxeter polytopes or sometimes less accurately Coxeter polyhedra.Hyperbolic groups in H2
Two-dimensional hyperbolic triangle groups exist as rank 3 Coxeter diagrams, defined by triangle for:There are infinitely many compact triangular hyperbolic Coxeter groups, including linear and triangle graphs. The linear graphs exist for right triangles.
Linear | Cyclic | - | - | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
∞ , : 2<pq ... ... ... | ∞ , : p+q+r>9 Paracompact Coxeter groups of rank 3 exist as limits to the compact ones.
Arithmetic triangle groupThe hyperbolic triangle groups that are also arithmetic groups form a finite subset. By computer search the complete list was determined by Kisao Takeuchi in his 1977 paper Arithmetic triangle groups. There are 85 total, 76 compact and 9 paracompact.
|