Diabetic retinopathy


Diabetic retinopathy, also known as diabetic eye disease, is a medical condition in which damage occurs to the retina due to diabetes mellitus. It is a leading cause of blindness in developed countries.
Diabetic retinopathy affects up to 80 percent of those who have had diabetes for 20 years or more. At least 90% of new cases could be reduced with proper treatment and monitoring of the eyes. The longer a person has diabetes, the higher his or her chances of developing diabetic retinopathy. Each year in the United States, diabetic retinopathy accounts for 12% of all new cases of blindness. It is also the leading cause of blindness in people aged 20 to 64.

Signs and symptoms

Diabetic retinopathy often has no early warning signs. Even macular edema, which can cause rapid vision loss, may not have any warning signs for some time. In general, however, a person with macular edema is likely to have blurred vision, making it hard to do things like read or drive. In some cases, the vision will get better or worse during the day.
The first stage, called non-proliferative diabetic retinopathy, has no symptoms. Patients may not notice the signs and have 20/20 vision. The only way to detect NPDR is by fundus examination by direct or indirect ophthalmoscope by a trained ophthalmologist, fundus photography can be used for objective documentation of the fundus findings, in which microaneurysms can be seen. If there is reduced vision, fluorescein angiography can show narrowing or blocked retinal blood vessels clearly.
Macular edema, in which blood vessels leak their contents into the macular region, can occur at any stage of NPDR. Its symptoms are blurred vision and darkened or distorted images that are not the same in both eyes. Ten percent of diabetic patients will have vision loss related to macular edema. Optical Coherence Tomography can show areas of
retinal thickening due to fluid accumulation from macular edema.
In the second stage, abnormal new blood vessels form at the back of the eye as part of proliferative diabetic retinopathy ; these can burst and bleed and blur the vision, because these new blood vessels are fragile. The first time this bleeding occurs, it may not be very severe. In most cases, it will leave just a few specks of blood, or spots floating in a person's visual field, though the spots often go away after a few hours.
These spots are often followed within a few days or weeks by a much greater leakage of blood, which blurs the vision. In extreme cases, a person may only be able to tell light from dark in that eye. It may take the blood anywhere from a few days to months or even years to clear from the inside of the eye, and in some cases the blood will not clear. These types of large hemorrhages tend to happen more than once, often during sleep.
On funduscopic exam, a doctor will see cotton wool spots, flame hemorrhages, and dot-blot hemorrhages.

Risk factors

All people with diabetes are at riskthose with Type I diabetes and those with Type II diabetes. The longer a person has had diabetes, the higher their risk of developing some ocular problem. Between 40 and 45 percent of Americans diagnosed with diabetes have some stage of diabetic retinopathy. After 20 years of diabetes, nearly all patients with Type I diabetes and >60% of patients with Type II diabetes have some degree of retinopathy; however, these statistics were published in 2002 using data from four years earlier, limiting the usefulness of the research. The subjects would have been diagnosed with diabetes in the late 1970s, before modern fast-acting insulin and home glucose testing.
Prior studies had also assumed a clear glycemic threshold between people at high and low risk of diabetic retinopathy.
Published rates vary between trials, the proposed explanation being differences in study methods and reporting of prevalence rather than incidence values.
During pregnancy, diabetic retinopathy may also be a problem for women with diabetes.
NIH recommends that all pregnant women with diabetes have dilated eye examinations each trimester.
People with Down syndrome, who have extra chromosome 21 material, almost never acquire diabetic retinopathy. This protection appears to be due to the elevated levels of endostatin, an anti-angiogenic protein, derived from collagen XVIII. The collagen XVIII gene is located on chromosome 21.

Pathogenesis

Diabetic retinopathy is the result of damage to the small blood vessels and neurons of the retina. The earliest changes leading to diabetic retinopathy include narrowing of the retinal arteries associated with reduced retinal blood flow; dysfunction of the neurons of the inner retina, followed in later stages by changes in the function of the outer retina, associated with subtle changes in visual function; dysfunction of the blood-retinal barrier, which protects the retina from many substances in the blood, leading to the leaking of blood constituents into the retinal neuropile. Later, the basement membrane of the retinal blood vessels thickens, capillaries degenerate and lose cells, particularly pericytes and vascular smooth muscle cells. This leads to loss of blood flow and progressive ischemia, and microscopic aneurysms which appear as balloon-like structures jutting out from the capillary walls, which recruit inflammatory cells; and advanced dysfunction and degeneration of the neurons and glial cells of the retina. The condition typically develops about 10-15 years after receiving the diagnosis of diabetes mellitus.
An experimental study suggests that pericyte death is caused by blood glucose persistently activating protein kinase C and mitogen-activated protein kinase, which, through a series of intermediates, inhibits signaling through platelet-derived growth factor receptors — signaling that supports cellular survival, proliferation, and growth. The resulting withdrawal of this signaling leads to the programmed cell death of the cells in this experimental model.
In addition, excessive sorbitol in diabetics is deposited on retina tissue and it is also proposed to play a role in diabetic retinopathy.
Small blood vessels – such as those in the eye – are especially vulnerable to poor blood sugar control. An overaccumulation of glucose damages the tiny blood vessels in the retina. During the initial stage, called nonproliferative diabetic retinopathy, most people do not notice any change in their vision. Early changes that are reversible and do not threaten central vision are sometimes termed simplex retinopathy or background retinopathy.
Some people develop a condition called macular edema. It occurs when the damaged blood vessels leak fluid and lipids onto the macula, the part of the retina that lets us see detail. The fluid makes the macula swell, which blurs vision.

Proliferative diabetic retinopathy

As the disease progresses, severe nonproliferative diabetic retinopathy enters an advanced or proliferative stage, where blood vessels proliferate/grow. The lack of oxygen in the retina causes fragile, new, blood vessels to grow along the retina and in the clear, gel-like vitreous humour that fills the inside of the eye. Without timely treatment, these new blood vessels can bleed, cloud vision, and destroy the retina. Fibrovascular proliferation can also cause tractional retinal detachment. The new blood vessels can also grow into the angle of the anterior chamber of the eye and cause neovascular glaucoma.
Nonproliferative diabetic retinopathy shows up as cotton wool spots, or microvascular abnormalities or as superficial retinal hemorrhages. Even so, the advanced proliferative diabetic retinopathy can remain asymptomatic for a very long time, and so should be monitored closely with regular checkups.

Diagnosis

Diabetic retinopathy is detected during an eye examination that includes:
The eye care professional will look at the retina for early signs of the disease, such as:
  1. leaking blood vessels,
  2. retinal swelling, such as macular edema,
  3. pale, fatty deposits on the retina signs of leaking blood vessels,
  4. damaged nerve tissue, and
  5. any changes in the blood vessels.
If macular edema is suspected, FFA and sometimes OCT may be performed.
Diabetic retinopathy also affects microcirculation thorough the body. A recent study showed assessment of conjunctival microvascular hemodynamics such as vessel diameter, red blood cell velocity and wall shear stress can be useful for diagnosis and screening of diabetic retinopathy. Furthermore, the pattern of conjunctival microvessels was shown to be useful for rapid monitoring and diagnosis of different stages of diabetic retinopathy.
In April 2018 the FDA approved a similar device called IDx-DR. is an AI diagnostic system that autonomously analyzes images of the retina for signs of diabetic retinopathy. As an autonomous, AI-based system, IDx-DR is unique in that it makes an assessment without the need for a clinician to also interpret the image or results, making it usable by health care providers who may not normally be involved in eye care.
Google is testing a cloud algorithm that scans photos of the eye for signs of retinopathy. The algorithm still requires FDA approval.
According to a DRSS user manual, poor quality images may be caused by cataract, poor dilation, ptosis, external ocular condition, or learning difficulties. There may be artefacts caused by dust, dirt, condensation, or smudge.

Screening

In the UK, screening for diabetic retinopathy is part of the standard of care for people with diabetes. After one normal screening in people with diabetes, further screening is recommended every two years. In the UK, this is recommended every year. Teleophthalmology has been employed in these programs.
In The U.S, a current guideline for diabetic retinopathy is recommendation of annual dilated exams for all patients with diabetes.
There are barriers to recommended screening that is contributing to the disparity. Such as the patient factor which includes education about diabetic retinopathy and the availability of the treatment. The health care system also contributes to the disparities in diabetic screening, which includes insurance coverage, long waiting time for the appointment and difficulty scheduling appointments which makes the person less likely to screen. Provider factors also influence the barrier to screening which is a lack of awareness of the screening guidelines, skills or having the right tools to perform eye exams which can affect the diagnosis and treatment. A cross-sectional study showed that when physicians treating black patients had more difficulty providing proper subspecialty care and diagnostic imaging for the patients.
There is evidence to support interventions to improve attendance for diabetic retinopathy screening. These might be specifically targeted at diabetic retinopathy screening, or could be general strategies to improve diabetes care.

Management

There are three major treatments for diabetic retinopathy, which are very effective in reducing vision loss from this disease. In fact, even people with advanced retinopathy have a 95 percent chance of keeping their vision when they get treatment before the retina is severely damaged. These three treatments are laser surgery, injection of corticosteroids or anti-VEGF agents into the eye, and vitrectomy.
Although these treatments are very successful, they do not cure diabetic retinopathy. Caution should be exercised in treatment with laser surgery since it causes a loss of retinal tissue. It is often more prudent to inject triamcinolone or anti-VEGF drugs. In some patients it results in a marked increase of vision, especially if there is an edema of the macula.
Although commonly used in some parts of the world, it is unclear whether herbal medicine are of benefit to people with diabetic retinopathy.
Avoiding tobacco use and correction of associated hypertension are important therapeutic measures in the management of diabetic retinopathy.
Obstructive sleep apnea has been associated with a higher incidence of diabetic eye disease due to blood desaturation caused by intermittent upper airway obstructions. Treatment for OSA can help reduce the risk of diabetic complications.
The best way of preventing the onset and delaying the progression of diabetic retinopathy is to monitor it vigilantly and achieve optimal glycemic control.
Since 2008 there have been other therapies drugs available.

Laser photocoagulation

can be used in two scenarios for the treatment of diabetic retinopathy. It can be used to treat macular edema by creating a Modified Grid at the posterior pole and it can be used for panretinal coagulation for controlling neovascularization. It is widely used for early stages of proliferative retinopathy. There are different types of lasers but there is limited evidence available on their benefits and harms to treat proliferative diabetic retinopathy.

Modified grid

A 'C' shaped area around the macula is treated with low intensity small burns. This helps in clearing the macular edema.

Panretinal

Panretinal photocoagulation, or PRP, is used to treat proliferative diabetic retinopathy. The goal is to create 1,600 – 2,000 burns in the retina with the hope of reducing the retina's oxygen demand, and hence the possibility of ischemia. It is done in multiple sittings.
In treating advanced diabetic retinopathy, the burns are used to destroy the abnormal blood vessels that form in the retina. This has been shown to reduce the risk of severe vision loss for eyes at risk by 50%.
Before using the laser, the ophthalmologist dilates the pupil and applies anaesthetic drops to numb the eye. In some cases, the doctor also may numb the area behind the eye to reduce discomfort. The patient sits facing the laser machine while the doctor holds a special lens on the eye. The physician can use a single spot laser, a pattern scan laser for two dimensional patterns such as squares, rings and arcs, or a navigated laser which works by tracking retinal eye movements in real time. During the procedure, the patient will see flashes of light. These flashes often create an uncomfortable stinging sensation for the patient. After the laser treatment, patients should be advised not to drive for a few hours while the pupils are still dilated. Vision will most likely remain blurry for the rest of the day. Though there should not be much pain in the eye itself, an ice-cream headache like pain may last for hours afterwards.
Patients will lose some of their peripheral vision after this surgery although it may be barely noticeable by the patient. The procedure does however save the center of the patient's sight. Laser surgery may also slightly reduce colour and night vision.
A person with proliferative retinopathy will always be at risk for new bleeding, as well as glaucoma, a complication from the new blood vessels. This means that multiple treatments may be required to protect vision.

Medications

Intravitreal triamcinolone acetonide

is a long acting steroid preparation. When injected in the vitreous cavity, it decreases the macular edema caused due to diabetic maculopathy, and results in an increase in visual acuity. The effect of triamcinolone is transient, lasting up to three months, which necessitates repeated injections for maintaining the beneficial effect. Best results of intravitreal Triamcinolone have been found in eyes that have already undergone cataract surgery. Complications of intravitreal injection of triamcinolone include cataract, steroid-induced glaucoma and endophthalmitis. A systematic review found evidence that eyes treated with the intravitreal injection of triamcinolone had better visual acuity outcomes compared to eyes treated with macular laser grid photocoagulation, or sham injections.

Intravitreal anti-VEGF

There are good results from multiple doses of intravitreal injections of anti-VEGF drugs such as bevacizumab. A 2017 systematic review update found moderate evidence that aflibercept may have advantages in improving visual outcomes over bevacizumab and ranibizumab, after one year. Present recommended treatment for diabetic macular edema is Modified Grid laser photocoagulation combined with multiple injections of anti-VEGF drugs.

Topical medications

There is little evidence for the role of topical medications in the treatment of macular edema, for example, topical non‐steroidal anti‐inflammatory agents.

Surgery

Instead of laser surgery, some people require a vitrectomy to restore vision. A vitrectomy is performed when there is a lot of blood in the vitreous. It involves removing the cloudy vitreous and replacing it with a saline solution.
Studies show that people who have a vitrectomy soon after a large hemorrhage are more likely to protect their vision than someone who waits to have the operation. Early vitrectomy is especially effective in people with insulin-dependent diabetes, who may be at greater risk of blindness from a hemorrhage into the eye.
Vitrectomy is often done under local anesthesia. The doctor makes a tiny incision in the sclera, or white of the eye. Next, a small instrument is placed into the eye to remove the vitreous and insert the saline solution into the eye.
Patients may be able to return home soon after the vitrectomy, or may be asked to stay in the hospital overnight. After the operation, the eye will be red and sensitive, and patients usually need to wear an eyepatch for a few days or weeks to protect the eye. Medicated eye drops are also prescribed to protect against infection. There is evidence which suggests anti-VEGF drugs given either prior to or during vitrectomy may reduce the risk of posterior vitreous cavity haemorrhage. Vitrectomy is frequently combined with other modalities of treatment.

Research

Light treatment

A medical device comprising a mask that delivers green light through the eyelids while a person sleeps was under development in 2016. The light from the mask stops rod cells in the retina from dark adapting, which is thought to reduce their oxygen requirement, which in turn diminishes new blood vessel formation and thus prevents diabetic retinopathy. As of 2016 a large clinical trial was underway. As of 2018, the results from the clinical trial showed no long-term therapeutic benefit from using the mask in diabetic retinopathy patients.

C-peptide

had shown promising results in treatment of diabetic complications incidental to vascular degeneration. Creative Peptides, Eli Lilly, and Cebix all had drug development programs for a C-peptide product. Cebix had the only ongoing program until it completed a Phase IIb trial in December 2014 that showed no difference between C-peptide and placebo, and it terminated its program and went out of business.

Stem cell therapy

Clinical trials are under way or are being populated in preparation for study at medical centers in Brazil, Iran and the United States. Current trials involve using the patients' own stem cells derived from bone marrow and injected into the degenerated areas in an effort to regenerate the vascular system.

Blood pressure control

A Cochrane review examined 15 randomized controlled trials to determine whether interventions that sought to control or reduce blood pressure in diabetics had any effects of diabetic retinopathy. While the results showed that interventions to control or reduce blood pressure prevented diabetic retinopathy for up to 4–5 years in diabetics, there was no evidence of any effect of these interventions on progression of diabetic retinopathy, preservation of visual acuity, adverse events, quality of life, and costs.

Fundoscopic image analyses

Diabetic retinopathy is diagnosed entirely by recognizing abnormalities on retinal images taken by fundoscopy. Color fundus photography is mainly used for staging the disease. Fluorescein angiography is used to assess the extent of retinopathy that aids in treatment plan development. Optical coherence tomography is used to determine the severity of edema and treatment response.
Because fundoscopic images are the main sources for diagnosis of diabetic retinopathy, manually analyzing those images can be time-consuming and unreliable, as the ability of detecting abnormalities varies by years of experience. Therefore, scientists have explored developing computer-aided diagnosis approaches to automate the process, which involves extracting information about the blood vessels and any abnormal patterns from the rest of the fundoscopic image and analyzing them.