Diesel engine


The diesel engine, named after Rudolf Diesel, is an internal combustion engine in which ignition of the fuel is caused by the elevated temperature of the air in the cylinder due to the mechanical compression. This contrasts with spark-ignition engines such as a petrol engine or gas engine, which uses a spark plug to ignite the air-fuel mixture.
Diesel engines work by compressing only the air. This increases the air temperature inside the cylinder to such a high degree that atomised diesel fuel injected into the combustion chamber ignites spontaneously. With the fuel being injected into the air just before combustion, the dispersion of the fuel is uneven; this is called a heterogeneous air-fuel mixture. The torque a diesel engine produces is controlled by manipulating the air-fuel ratio ; instead of throttling the intake air, the diesel engine relies on altering the amount of fuel that is injected, and the air-fuel ratio is usually high.
The diesel engine has the highest thermal efficiency of any practical internal or external combustion engine due to its very high expansion ratio and inherent lean burn which enables heat dissipation by the excess air. A small efficiency loss is also avoided compared with non-direct-injection gasoline engines since unburned fuel is not present during valve overlap and therefore no fuel goes directly from the intake/injection to the exhaust. Low-speed diesel engines can reach effective efficiencies of up to 55%.
Diesel engines may be designed as either two-stroke or four-stroke cycles. They were originally used as a more efficient replacement for stationary steam engines. Since the 1910s, they have been used in submarines and ships. Use in locomotives, trucks, heavy equipment and electricity generation plants followed later. In the 1930s, they slowly began to be used in a few automobiles. Since the 1970s, the use of diesel engines in larger on-road and off-road vehicles in the US has increased. According to Konrad Reif, the EU average for diesel cars accounts for half of newly registered cars.
The world's largest diesel engines put in service are 14-cylinder, two-stroke watercraft diesel engines; they produce a peak power of almost 100 MW each.

History

Diesel's idea

In 1878, Rudolf Diesel, who was a student at the "Polytechnikum" in Munich, attended the lectures of Carl von Linde. Linde explained that steam engines are capable of converting just 6–10% of the heat energy into work, but that the Carnot cycle allows conversion of much more of the heat energy into work by means of isothermal change in condition. According to Diesel, this ignited the idea of creating a highly efficient engine that could work on the Carnot cycle. Diesel was also exposed to a fire piston, a traditional fire starter using rapid adiabatic compression principles which Linde had acquired from Southeast Asia. After several years of working on his ideas, Diesel published them in 1893 in the essay Theory and Construction of a Rational Heat Motor.
Diesel was heavily criticised for his essay, but only few found the mistake that he made; his rational heat motor was supposed to utilise a constant temperature cycle that would require a much higher level of compression than that needed for compression ignition. Diesel's idea was to compress the air so tightly that the temperature of the air would exceed that of combustion. However, such an engine could never perform any usable work. In his 1892 US patent #542846 Diesel describes the compression required for his cycle:
By June 1893, Diesel had realised his original cycle would not work and he adopted the constant pressure cycle. Diesel describes the cycle in his 1895 patent application. Notice that there is no longer a mention of compression temperatures exceeding the temperature of combustion. Now it is simply stated that the compression must be sufficient to trigger ignition.
In 1892, Diesel received patents in Germany, Switzerland, the United Kingdom and the United States for "Method of and Apparatus for Converting Heat into Work". In 1894 and 1895, he filed patents and addenda in various countries for his engine; the first patents were issued in Spain, France and Belgium in December 1894, and in Germany in 1895 and the United States in 1898.
Diesel was attacked and criticised over a time period of several years. Critics have claimed that Diesel never invented a new motor and that the invention of the diesel engine is fraud. Otto Köhler and Emil Capitaine were two of the most prominent critics of Diesel's time. Köhler had published an essay in 1887, in which he describes an engine similar to the engine Diesel describes in his 1893 essay. Köhler figured that such an engine could not perform any work. Emil Capitaine had built a petroleum engine with glow-tube ignition in the early 1890s; he claimed against his own better judgement, that his glow-tube ignition engine worked the same way Diesel's engine did. His claims were unfounded and he lost a patent lawsuit against Diesel. Other engines, such as the Akroyd engine and the Brayton engine, also use an operating cycle that is different from the diesel engine cycle. Friedrich Sass says that the diesel engine is Diesel's "very own work" and that any "Diesel myth" is "falsification of history".

The first diesel engine

Diesel sought out firms and factories that would build his engine. With the help of Moritz Schröter and, he succeeded in convincing both Krupp in Essen and the Maschinenfabrik Augsburg. Contracts were signed in April 1893, and in early summer 1893, Diesel's first prototype engine was built in Augsburg. On 10 August 1893, the first ignition took place, the fuel used was petrol. In winter 1893/1894, Diesel redesigned the existing engine, and by 18 January 1894, his mechanics had converted it into the second prototype. On February 17, 1894, the redesigned engine ran for 88 revolutions – one minute; with this news, Maschinenfabrik Augsburg's stock rose by 30%, indicative of the tremendous anticipated demands for a more efficient engine. On 26 June 1895 the engine achieved an effective efficiency of 16.6% and had a fuel consumption of 519 g·kW−1·h−1.
However, despite proving the concept, the engine caused problems, and Diesel could not achieve any substantial progress. Therefore, Krupp considered rescinding the contract they had made with Diesel. Diesel was forced to improve the design of his engine and rushed to construct a third prototype engine. Between 8 November and 20 December 1895, the second prototype had successfully covered over 111 hours on the test bench. In the January 1896 report, this was considered a success.
In February 1896, Diesel considered supercharging the third prototype. Imanuel Lauster, who was ordered to draw the third prototype, had finished the drawings by 30 April 1896. During summer that year the engine was built, it was completed on 6 October 1896. Tests were conducted until early 1897. First public tests began on 1 February 1897. Moritz Schröter's test on 17 February 1897 was the main test of Diesel's engine. The engine was rated 13.1 kW with a specific fuel consumption of 324 g·kW−1·h−1, resulting in an effective efficiency of 26.2%. By 1898, Diesel had become a millionaire.

Timeline

1890s

Characteristics

The characteristics of a diesel engine are
The diesel internal combustion engine differs from the gasoline powered Otto cycle by using highly compressed hot air to ignite the fuel rather than using a spark plug.
In the diesel engine, only air is initially introduced into the combustion chamber. The air is then compressed with a compression ratio typically between 15:1 and 23:1. This high compression causes the temperature of the air to rise. At about the top of the compression stroke, fuel is injected directly into the compressed air in the combustion chamber. This may be into a void in the top of the piston or a pre-chamber depending upon the design of the engine. The fuel injector ensures that the fuel is broken down into small droplets, and that the fuel is distributed evenly. The heat of the compressed air vaporises fuel from the surface of the droplets. The vapour is then ignited by the heat from the compressed air in the combustion chamber, the droplets continue to vaporise from their surfaces and burn, getting smaller, until all the fuel in the droplets has been burnt. Combustion occurs at a substantially constant pressure during the initial part of the power stroke. The start of vaporisation causes a delay before ignition and the characteristic diesel knocking sound as the vapour reaches ignition temperature and causes an abrupt increase in pressure above the piston. When combustion is complete the combustion gases expand as the piston descends further; the high pressure in the cylinder drives the piston downward, supplying power to the crankshaft.
As well as the high level of compression allowing combustion to take place without a separate ignition system, a high compression ratio greatly increases the engine's efficiency. Increasing the compression ratio in a spark-ignition engine where fuel and air are mixed before entry to the cylinder is limited by the need to prevent pre-ignition, which would cause engine damage. Since only air is compressed in a diesel engine, and fuel is not introduced into the cylinder until shortly before top dead centre, premature detonation is not a problem and compression ratios are much higher.
The p–V diagram is a simplified and idealised representation of the events involved in a diesel engine cycle, arranged to illustrate the similarity with a Carnot cycle. Starting at 1, the piston is at bottom dead centre and both valves are closed at the start of the compression stroke; the cylinder contains air at atmospheric pressure. Between 1 and 2 the air is compressed adiabatically – that is without heat transfer to or from the environment – by the rising piston. During this compression, the volume is reduced, the pressure and temperature both rise. At or slightly before 2 fuel is injected and burns in the compressed hot air. Chemical energy is released and this constitutes an injection of thermal energy into the compressed gas. Combustion and heating occur between 2 and 3. In this interval the pressure remains constant since the piston descends, and the volume increases; the temperature rises as a consequence of the energy of combustion. At 3 fuel injection and combustion are complete, and the cylinder contains gas at a higher temperature than at 2. Between 3 and 4 this hot gas expands, again approximately adiabatically. Work is done on the system to which the engine is connected. During this expansion phase the volume of the gas rises, and its temperature and pressure both fall. At 4 the exhaust valve opens, and the pressure falls abruptly to atmospheric. This is unresisted expansion and no useful work is done by it. Ideally the adiabatic expansion should continue, extending the line 3–4 to the right until the pressure falls to that of the surrounding air, but the loss of efficiency caused by this unresisted expansion is justified by the practical difficulties involved in recovering it. After the opening of the exhaust valve, the exhaust stroke follows, but this are not shown on the diagram. If shown, they would be represented by a low-pressure loop at the bottom of the diagram. At 1 it is assumed that the exhaust and induction strokes have been completed, and the cylinder is again filled with air. The piston-cylinder system absorbs energy between 1 and 2 – this is the work needed to compress the air in the cylinder, and is provided by mechanical kinetic energy stored in the flywheel of the engine. Work output is done by the piston-cylinder combination between 2 and 4. The difference between these two increments of work is the indicated work output per cycle, and is represented by the area enclosed by the p–V loop. The adiabatic expansion is in a higher pressure range than that of the compression because the gas in the cylinder is hotter during expansion than during compression. It is for this reason that the loop has a finite area, and the net output of work during a cycle is positive.

Efficiency

Due to its high compression ratio, the diesel engine has a high efficiency, and the lack of a throttle valve means that the charge-exchange losses are fairly low, resulting in a low specific fuel consumption, especially in medium and low load situations. This makes the diesel engine very economical. Even though diesel engines have a theoretical efficiency of 75%, in practice it is much lower. In his 1893 essay Theory and Construction of a Rational Heat Motor, Rudolf Diesel describes that the effective efficiency of the diesel engine would be in between 43.2% and 50.4%, or maybe even greater. Modern passenger car diesel engines may have an effective efficiency of up to 43%, whilst engines in large diesel trucks, and buses can achieve peak efficiencies around 45%. However, average efficiency over a driving cycle is lower than peak efficiency. For example, it might be 37% for an engine with a peak efficiency of 44%. The highest diesel engine efficiency of up to 55% is achieved by large two-stroke watercraft diesel engines.

Major advantages

Diesel engines have several advantages over engines operating on other principles:
Diesel engines rely on the air/fuel mixing being done in the cylinder, which means they need a fuel injection system. The fuel is injected directly into the combustion chamber, which can be either a segmented combustion chamber, known as indirect injection, or an unsegmented combustion chamber, known as direct injection. The definition of the diesel engine is specific in requiring that the fuel be introduced directly into the combustion, or pre-combustion chamber, rather than initially into an external manifold. For creating the fuel pressure, diesel engines usually have an injection pump. There are several different types of injection pumps and methods for creating a fine air-fuel mixture. Over the years many different injection methods have been used. These can be described as the following:
A necessary component of all diesel engines is a mechanical or electronic governor which regulates the torque of the engine and thus idling speed and maximum speed by controlling the rate of fuel delivery. This means a change of. Unlike Otto-cycle engines, incoming air is not throttled. Mechanically-governed fuel injection systems are driven by the engine's accessory gear train or serpentine belt. These systems use a combination of springs and weights to control fuel delivery relative to both load and speed. Modern electronically controlled diesel engines control fuel delivery by use of an electronic control module or electronic control unit. The ECM/ECU receives an engine speed signal, as well as other operating parameters such as intake manifold pressure and fuel temperature, from a sensor and controls the amount of fuel and start of injection timing through actuators to maximise power and efficiency and minimise emissions. Controlling the timing of the start of injection of fuel into the cylinder is a key to minimizing emissions, and maximizing fuel economy, of the engine. The timing is measured in degrees of crank angle of the piston before top dead centre. For example, if the ECM/ECU initiates fuel injection when the piston is 10° before TDC, the start of injection, or timing, is said to be 10° before TDC. Optimal timing will depend on the engine design as well as its speed and load.

Types of fuel injection

Air-blast injection

Diesel's original engine injected fuel with the assistance of compressed air, which atomised the fuel and forced it into the engine through a nozzle. The nozzle opening was closed by a pin valve lifted by the camshaft to initiate the fuel injection before top dead centre. This is called an air-blast injection. Driving the compressor used some power but the efficiency was better than the efficiency of any other combustion engine at that time. Also, air-blast injection made engines very heavy and did not allow for quick load changes making it unsuitable for road vehicles.

Indirect injection

An indirect diesel injection system engine delivers fuel into a small chamber called a swirl chamber, precombustion chamber, pre chamber or ante-chamber, which is connected to the cylinder by a narrow air passage. Generally the goal of the pre chamber is to create increased turbulence for better air / fuel mixing. This system also allows for a smoother, quieter running engine, and because fuel mixing is assisted by turbulence, injector pressures can be lower. Most IDI systems use a single orifice injector. The pre-chamber has the disadvantage of lowering efficiency due to increased heat loss to the engine's cooling system, restricting the combustion burn, thus reducing the efficiency by 5–10%. IDI engines are also more difficult to start and usually require the use of glow plugs. IDI engines may be cheaper to build but generally require a higher compression ratio than the DI counterpart. IDI also makes it easier to produce smooth, quieter running engines with a simple mechanical injection system since exact injection timing is not as critical. Most modern automotive engines are DI which have the benefits of greater efficiency and easier starting; however, IDI engines can still be found in the many ATV and small diesel applications. Indirect injected diesel engines use pintle-type fuel injectiors.

Helix-controlled direct injection

Diesel engines inject fuel directly into the cylinder. Usually there is a combustion cup in the top of the piston where the fuel is sprayed. Many different methods of injection can be used. Usually, an engine with helix-controlled mechanic direct injection has either an inline or a distributor injection pump. For each engine cylinder, the corresponding plunger in the fuel pump measures out the correct amount of fuel and determines the timing of each injection. These engines use injectors that are very precise spring-loaded valves that open and close at a specific fuel pressure. Separate high-pressure fuel lines connect the fuel pump with each cylinder. Fuel volume for each single combustion is controlled by a slanted groove in the plunger which rotates only a few degrees releasing the pressure and is controlled by a mechanical governor, consisting of weights rotating at engine speed constrained by springs and a lever. The injectors are held open by the fuel pressure. On high-speed engines the plunger pumps are together in one unit. The length of fuel lines from the pump to each injector is normally the same for each cylinder in order to obtain the same pressure delay. Direct injected diesel engines usually use orifice-type fuel injectors.
Electronic control of the fuel injection transformed the direct injection engine by allowing much greater control over the combustion.

Unit direct injection

Unit direct injection, also known as Pumpe-Düse, is a high pressure fuel injection system that injects fuel directly into the cylinder of the engine. In this system the injector and the pump are combined into one unit positioned over each cylinder controlled by the camshaft. Each cylinder has its own unit eliminating the high-pressure fuel lines, achieving a more consistent injection. Under full load, the injection pressure can reach up to 220 MPa. Unit injection systems used to dominate the commercial diesel engine market, but due to higher requirements of the flexibility of the injection system, they have been rendered obsolete by the more advanced common-rail-system.

Common rail direct injection

Common rail direct injection systems do not have the fuel metering, pressure-raising and delivery functions in a single unit, as in the case of a Bosch distributor-type pump, for example. A high-pressure pump supplies the CR. The requirements of each cylinder injector are supplied from this common high pressure reservoir of fuel. An Electronic Diesel Control controls both rail pressure and injections depending on engine operating conditions. The injectors of older CR systems have solenoid-driven plungers for lifting the injection needle, whilst newer CR injectors use plungers driven by piezoelectric actuators, that have fewer moving mass and therefore allow even more injections in a very short period of time. The injection pressure of modern CR systems ranges from 140 MPa to 270 MPa.

Types

There are several different ways of categorising diesel engines, based on different design characteristics:

By power output

Source

By cylinder bore

Source:

By number of strokes

Source

By piston and connecting rod

Regular cylinder configurations such as straight, V, and boxer configurations can be used for diesel engines. The inline-six-cylinder design is the most prolific in light- to medium-duty engines, though inline-four engines are also common. Small-capacity engines are generally four- or six-cylinder types, with the four-cylinder being the most common type found in automotive uses. The V configuration used to be common for commercial vehicles, but it has been abandoned in favour of the inline configuration.

By engine speeds

Günter Mau categorises diesel engines by their rotational speeds into three groups:
Source

High-speed engines

High-speed engines are used to power trucks, buses, tractors, cars, yachts, compressors, pumps and small electrical generators. As of 2018, most high-speed engines have direct injection. Many modern engines, particularly in on-highway applications, have common rail direct injection. On bigger ships, high-speed diesel engines are often used for powering electric generators. The highest power output of high-speed diesel engines is approximately 5 MW.

Medium-speed engines

Medium-speed engines are used in large electrical generators, ship propulsion and mechanical drive applications such as large compressors or pumps. Medium speed diesel engines operate on either diesel fuel or heavy fuel oil by direct injection in the same manner as low-speed engines. Usually, they are four-stroke engines with trunk pistons.
The power output of medium-speed diesel engines can be as high as 21,870 kW, with the effective efficiency being around 47...48%. Most larger medium-speed engines are started with compressed air direct on pistons, using an air distributor, as opposed to a pneumatic starting motor acting on the flywheel, which tends to be used for smaller engines.
Medium-speed engines intended for marine applications are usually used to power ferries, passenger ships or small freight ships. Using medium-speed engines reduces the cost of smaller ships and increases their transport capacity. In addition to that, a single ship can use two smaller engines instead of one big engine, which increases the ship's safety.

Low-speed engines

Low-speed diesel engines are usually very large in size and mostly used to power ships. There are two different types of low-speed engines that are commonly used: Two-stroke engines with a crosshead, and four-stroke engines with a regular trunk-piston. Two-stroke engines have a limited rotational frequency and their charge exchange is more difficult, which means that they are usually bigger than four-stroke engines and used to directly power a ship's propeller. Four-stroke engines on ships are usually used to power an electric generator. An electric motor powers the propeller. Both types are usually very undersquare. Low-speed diesel engines often have an effective efficiency of up to 55%. Like medium-speed engines, low-speed engines are started with compressed air, and they use heavy oil as their primary fuel.

Two-stroke engines

s use only two strokes instead of four strokes for a complete engine cycle. Filling the cylinder with air and compressing it takes place in one stroke, and the power and exhaust strokes are combined. The compression in a two-stroke diesel engine is similar to the compression that takes place in a four-stroke diesel engine: As the piston passes through bottom centre and starts upward, compression commences, culminating in fuel injection and ignition. Instead of a full set of valves, two-stroke diesel engines have simple intake ports, and exhaust ports. When the piston approaches bottom dead centre, both the intake and the exhaust ports are "open", which means that there is atmospheric pressure inside the cylinder. Therefore, some sort of pump is required to blow the air into the cylinder and the combustion gasses into the exhaust. This process is called scavenging. The pressure required is approximately 10 - 30 kPa.
;Scavenging
In general, there are three types of scavenging possible:
Crossflow scavenging is incomplete and limits the stroke, yet some manufacturers used it. Reverse flow scavenging is a very simple way of scavenging, and it was popular amongst manufacturers until the early 1980s. Uniflow scavenging is more complicated to make but allows the highest fuel efficiency; since the early 1980s, manufacturers such as MAN and Sulzer have switched to this system. It is standard for modern marine two-stroke diesel engines.

Dual-fuel diesel engines

So-called dual-fuel diesel engines or gas diesel engines burn two different types of fuel simultaneously, for instance, a gaseous fuel and diesel engine fuel. The diesel engine fuel auto-ignites due to compression ignition, and then ignites the gaseous fuel. Such engines do not require any type of spark ignition and operate similar to regular diesel engines.

Diesel engine particularities

Torque and power

is a force applied to a lever at a right angle multiplied by the lever length. This means that the torque an engine produces depends on the displacement of the engine and the force that the gas pressure inside the cylinder applies to the piston, commonly referred to as effective piston pressure:
;Example
Power is the quotient of work and time:
;Example
This means, that increasing either torque or time will result in an increase in power. As the maximum rotational frequency of the diesel engine's crankshaft is usually in between 3500...5000 min−1 due to diesel principle limitations, the torque of the diesel engine must be great to achieve a high power, or, in other words, as the diesel engine cannot use a lot of time for achieving a certain amount of power, it has to perform more work.

Mass

The average diesel engine has a poorer power-to-mass ratio than the Otto engine. This is because the diesel must operate at lower engine speeds. Due to the higher operating pressure inside the combustion chamber, which increases the forces on the parts due to inertial forces, the diesel engine needs heavier, stronger parts capable of resisting these forces, which results in an overall greater engine mass.

Emissions

As diesel engines burn a mixture of fuel and air, the exhaust therefore contains substances that consist of the same chemical elements, as fuel and air. The main elements of air are nitrogen and oxygen, fuel consists of hydrogen and carbon. Burning the fuel will result in the final stage of oxidation. An ideal diesel engine,, running on an ideal air-fuel mixture, produces an exhaust that consists of carbon dioxide, water, nitrogen, and the remaining oxygen. The combustion process in a real engine differs from an ideal engine's combustion process, and due to incomplete combustion, the exhaust contains additional substances, most notably, carbon monoxide, diesel particulate matter, and due to dissociation, nitrogen oxide.
When diesel engines burn their fuel with high oxygen levels, this results in high combustion temperatures and higher efficiency, and particulate matter tends to burn, but the amount of pollution tends to increase. pollution can be reduced by recirculating a portion of an engine's exhaust gas back to the engine cylinders, which reduces the oxygen quantity, causing a reduction of combustion temperature, and resulting in fewer. To further reduce emissions, lean traps and SCR-catalysts can be used. Lean traps adsorb the nitrogen oxide and "trap" it. Once the LNT is full, it has to be "regenerated" using hydrocarbons. This is achieved by using a very rich air-fuel mixture, resulting in incomplete combustion. An SCR-catalyst converts nitrogen oxide using urea, which is injected into the exhaust stream, and catalytically converts the into nitrogen and water. Compared with an Otto engine, the diesel engine produces approximately the same amount of, but some older diesel engines may have an exhaust that contains up to 50% less. However, Otto engines, unlike diesel engines, can use a three-way-catalyst, that converts most of the.
SpeciesMass percentageVolume percentage
Nitrogen 75.2%72.1%
Oxygen 15%0.7%
Carbon dioxide 7.1%12.3%
Water 2.6%13.8%
Carbon monoxide 0.043%0.09%
Nitrogen oxide 0.034%0.13%
Hydrocarbons 0.005%0.09%
Aldehyde0.001%
Particulate matter 0.008%0.0008%

Noise

The distinctive noise of a diesel engine is variably called diesel clatter, diesel nailing, or diesel knock. Diesel clatter is caused largely by the way the fuel ignites; the sudden ignition of the diesel fuel when injected into the combustion chamber causes a pressure wave, resulting in an audible ″knock″. Engine designers can reduce diesel clatter through: indirect injection; pilot or pre-injection; injection timing; injection rate; compression ratio; turbo boost; and exhaust gas recirculation. Common rail diesel injection systems permit multiple injection events as an aid to noise reduction. Therefore, newer diesel engines do not knock anymore. Diesel fuels with a higher cetane rating are more likely to ignite and hence reduce diesel clatter.

Cold weather starting

In general, diesel engines do not require any starting aid. In cold weather however, some diesel engines can be difficult to start and may need preheating depending on the combustion chamber design. The minimum starting temperature that allows starting without pre-heating is 40 °C for precombustion chamber engines, 20 °C for swirl chamber engines, and 0 °C for direct injected engines. Smaller engines with a displacement of less than 1 litre per cylinder usually have glowplugs, whilst larger heavy-duty engines have flame-start systems.
In the past, a wider variety of cold-start methods were used. Some engines, such as Detroit Diesel engines used a system to introduce small amounts of ether into the inlet manifold to start combustion. Instead of glowplugs, some diesel engines are equipped with starting aid systems that change valve timing. The simplest way this can be done is with a decompression lever. Activating the decompression lever locks the outlet valves in a slight down position, resulting in the engine not having any compression and thus allowing for turning the crankshaft over without resistance. When the crankshaft reaches a higher speed, flipping the decompression lever back into its normal position will abruptly re-activate the outlet valves, resulting in compression − the flywheel's mass moment of inertia then starts the engine. Other diesel engines, such as the precombustion chamber engine XII Jv 170/240 made by Ganz & Co., have a valve timing changing system that is operated by adjusting the inlet valve camshaft, moving it into a slight "late" position. This will make the inlet valves open with a delay, forcing the inlet air to heat up when entering the combustion chamber.

Supercharging and turbocharging

As the diesel engine relies on manipulation of for torque controlling and speed regulation, the intake air mass does not have to precisely match the injected fuel mass. diesel engines are thus ideally suited for supercharging and turbocharging. An additional advantage of the diesel engine is the lack of fuel during the compression stroke. In diesel engines, the fuel is injected near top dead centre, when the piston is near its highest position. The fuel then ignites due to compression heat. Preignition, caused by the artificial turbocharger compression increase during the compression stroke, cannot occur.
Many diesels are therefore turbocharged and some are both turbocharged and supercharged. A turbocharged engine can produce more power than a naturally aspirated engine of the same configuration. A supercharger is powered mechanically by the engine's crankshaft, while a turbocharger is powered by the engine exhaust. Turbocharging can improve the fuel economy of diesel engines by recovering waste heat from the exhaust, increasing the excess air factor, and increasing the ratio of engine output to friction losses. Adding an intercooler to a turbocharged engine further increases engine performance by cooling down the air-mass and thus allowing more air-mass per volume.
A two-stroke engine does not have a discrete exhaust and intake stroke and thus is incapable of self-aspiration. Therefore, all two-stroke diesel engines must be fitted with a blower or some form of compressor to charge the cylinders with air and assist in dispersing exhaust gases, a process referred to as scavenging. Roots-type superchargers were used for ship engines until the mid-1950s, since 1955 they have been widely replaced by turbochargers. Usually, a two-stroke ship diesel engine has a single-stage turbocharger with a turbine that has an axial inflow and a radial outflow.

Fuel and fluid characteristics

In diesel engines, a mechanical injector system atomizes the fuel directly into the combustion chamber. Because only air is inducted into the cylinder in a diesel engine, the compression ratio can be much higher as there is no risk of pre-ignition provided the injection process is accurately timed. This means that cylinder temperatures are much higher in a diesel engine than a petrol engine, allowing less volatile fuels to be used.
diesel engine is a petrol engine, but it also runs on jet fuel,, kerosene,, and diesel engine fuel
Therefore, diesel engines can operate on a huge variety of different fuels. In general, fuel for diesel engines should have a proper viscosity, so that the injection pump can pump the fuel to the injection nozzles without causing damage to itself or corrosion of the fuel line. At injection, the fuel should form a good fuel spray, and it should not have a coking effect upon the injection nozzles. To ensure proper engine starting and smooth operation, the fuel should be willing to ignite and hence not cause a high ignition delay,. Diesel fuel should also have a high lower heating value.
Inline mechanical injector pumps generally tolerate poor-quality or bio-fuels better than distributor-type pumps. Also, indirect injection engines generally run more satisfactorily on fuels with a high ignition delay than direct injection engines. This is partly because an indirect injection engine has a much greater 'swirl' effect, improving vaporisation and combustion of fuel, and because lipid depositions can condense on the cylinder walls of a direct-injection engine if combustion temperatures are too low. Direct-injected engines with an MAN centre sphere combustion chamber rely on fuel condensing on the combustion chamber walls. The fuel starts vaporising only after ignition sets in, and it burns relatively smoothly. Therefore, such engines also tolerate fuels with poor ignition delay characteristics, and, in general, they can operate on petrol rated 86 RON.

Fuel types

In his 1893 work Theory and Construction of a Rational Heat Motor, Rudolf Diesel considers using coal dust as fuel for the diesel engine. However, Diesel just considered using coal dust ; his actual engine was designed to operate on petroleum, which was soon replaced with regular petrol and kerosene for further testing purposes, as petroleum proved to be too viscous. In addition to kerosene and petrol, Diesel's engine could also operate on ligroin.
Before diesel engine fuel was standardised, fuels such as petrol, kerosene, gas oil, vegetable oil and mineral oil, as well as mixtures of these fuels, were used. Typical fuels specifically intended to be used for diesel engines were petroleum distillates and coal-tar distillates such as the following; these fuels have specific lower heating values of:
Source:
The first diesel fuel standards were the DIN 51601, VTL 9140-001, and NATO F 54, which appeared after World War II. The modern European EN 590 diesel fuel standard was established in May 1993; the modern version of the NATO F 54 standard is mostly identical with it. The DIN 51628 biodiesel standard was rendered obsolete by the 2009 version of the EN 590; FAME biodiesel conforms to the EN 14214 standard. Watercraft diesel engines usually operate on diesel engine fuel that conforms to the ISO 8217 standard. Also, some diesel engines can operate on gasses.

Modern diesel fuel properties

EN 590 EN 14214
Ignition performance≥ 51 CN≥ 51 CN
Density at 15 °C820...845 kg·m−3860...900 kg·m−3
Sulphur content≤10 mg·kg−1≤10 mg·kg−1
Water content≤200 mg·kg−1≤500 mg·kg−1
Lubricity460 µm460 µm
Viscosity at 40 °C2.0...4.5 mm2·s−13.5...5.0 mm2·s−1
FAME content≤7.0%≥96.5%
Molar H/C ratio1.69
Lower heating value37.1 MJ·kg−1

Gelling

DIN 51601 diesel fuel was prone to waxing or gelling in cold weather; both are terms for the solidification of diesel oil into a partially crystalline state. The crystals build up in the fuel system, eventually starving the engine of fuel and causing it to stop running. Low-output electric heaters in fuel tanks and around fuel lines were used to solve this problem. Also, most engines have a spill return system, by which any excess fuel from the injector pump and injectors is returned to the fuel tank. Once the engine has warmed, returning warm fuel prevents waxing in the tank. Before direct injection diesel engines, some manufacturers, such as BMW, recommended mixing up to 30% petrol in with the diesel by fuelling diesel cars with petrol to prevent the fuel from gelling when the temperatures dropped below −15 °C.

Safety

Fuel flammability

Diesel fuel is less flammable than petrol, because its flash point is 55 °C, leading to a lower risk of fire caused by fuel in a vehicle equipped with a diesel engine.
Diesel fuel can create an explosive air/vapour mix under the right conditions. However, compared with petrol, it is less prone due to its lower vapour pressure, which is an indication of evaporation rate. The Material Safety Data Sheet for ultra-low sulfur diesel fuel indicates a vapour explosion hazard for diesel fuel indoors, outdoors, or in sewers.

Cancer

has been classified as an IARC Group 1 carcinogen. It causes lung cancer and is associated with an increased risk for bladder cancer.

Engine runaway (uncontrollable overspeeding)

See diesel engine runaway.

Applications

The characteristics of diesel have different advantages for different applications.

Passenger cars

Diesel engines have long been popular in bigger cars and have been used in smaller cars such as superminis in Europe since the 1980s. They were popular in larger cars earlier, as the weight and cost penalties were less noticeable. Smooth operation as well as high low end torque are deemed important for passenger cars and small commercial vehicles. The introduction of electronically controlled fuel injection significantly improved the smooth torque generation, and starting in the early 1990s, car manufacturers began offering their high-end luxury vehicles with diesel engines. Passenger car diesel engines usually have between three and ten cylinders, and a displacement ranging from 0.8 to 5.0 litres. Modern powerplants are usually turbocharged and have direct injection.
Diesel engines do not suffer from intake-air throttling, resulting in very low fuel consumption especially at low partial load. One fifth of all passenger cars worldwide have diesel engines, with many of them being in Europe, where approximately 47% of all passenger cars are diesel-powered. Daimler-Benz in conjunction with Robert Bosch GmbH produced diesel-powered passenger cars starting in 1936. The popularity of diesel-powered passenger cars in markets such as India, South Korea and Japan is increasing.

Commercial vehicles and lorries

In 1893, Rudolf Diesel suggested that the diesel engine could possibly power ‘wagons’. The first lorries with diesel engines were brought to market in 1924.
Modern diesel engines for lorries have to be both extremely reliable and very fuel efficient. Common-rail direct injection, turbocharging and four valves per cylinder are standard. Displacements range from 4.5 to 15.5 litres, with power-to-mass ratios of 2.5–3.5 kg·kW−1 for heavy duty and 2.0–3.0 kg·kW−1 for medium duty engines. V6 and V8 engines used to be common, due to the relatively low engine mass the V configuration provides. Recently, the V configuration has been abandoned in favour of straight engines. These engines are usually straight-6 for heavy and medium duties and straight-4 for medium duty. Their undersquare design causes lower overall piston speeds which results in increased lifespan of up to. Compared with 1970s diesel engines, the expected lifespan of modern lorry diesel engines has more than doubled.

Railroad rolling stock

Diesel engines for locomotives are built for continuous operation between refuellings and may need to be designed to use poor quality fuel in some circumstances. Some locomotives use two-stroke diesel engines. Diesel engines have replaced steam engines on all non-electrified railroads in the world. The first diesel locomotives appeared in 1913, and diesel multiple units soon after. Most modern diesel locomotives are more correctly known as diesel-electric locomotives because they use an electric transmission: the diesel engine drives an electric generator which powers electric traction motors. While electric locomotives have replaced the diesel locomotive for passenger services in many areas diesel traction is widely used for cargo-hauling freight trains and on tracks where electrification is not economically viable.
In the 1940s, road vehicle diesel engines with power outputs of 150...200 PS were considered reasonable for DMUs. Commonly, regular truck powerplants were used. The height of these engines had to be less than 1,000 mm to allow underfloor installation. Usually, the engine was mated with a pneumatically operated mechanical gearbox, due to the low size, mass, and production costs of this design. Some DMUs used hydraulic torque converters instead. Diesel-electric transmission was not suitable for such small engines. In the 1930s, the Deutsche Reichsbahn standardised its first DMU engine. It was a 30.3 litre, 12-cylinder boxer unit, producing 275 PS. Several German manufacturers produced engines according to this standard.

Watercraft

The requirements for marine diesel engines vary, depending on the application. For military use and medium-size boats, medium-speed four-stroke diesel engines are most suitable. These engines usually have up to 24 cylinders and come with power outputs in the one-digit Megawatt region. Small boats may use lorry diesel engines. Large ships use extremely efficient, low-speed two-stroke diesel engines. They can reach efficiencies of up to 55%. Unlike most regular diesel engines, two-stroke watercraft engines use highly viscous fuel oil. Submarines are usually diesel-electric.
The first diesel engines for ships were made by A. B. Diesels Motorer Stockholm in 1903. These engines were three-cylinder units of 120 PS and four-cylinder units of 180 PS and used for Russian ships. In World War I, especially submarine diesel engine development advanced quickly. By the end of the War, double acting piston two-stroke engines with up to 12,200 PS had been made for marine use.

Aviation

Diesel engines had been used in aircraft before World War II, for instance, in the rigid airship LZ 129 Hindenburg, which was powered by four Daimler-Benz DB 602 diesel engines, or in several Junkers aircraft, which had Jumo 205 engines installed. Until the late 1970s, there has not been any applications of the diesel engine in aircraft. In 1978, Karl H. Bergey argued that “the likelihood of a general aviation diesel in the near future is remote.” In recent years, diesel engines have found use in unmanned aircraft, due to their reliability, durability, and low fuel consumption. In early 2019, AOPA reported, that a diesel engine model for general aviation aircraft is “approaching the finish line.”

Non-road diesel engines

are commonly used for construction equipment. Fuel efficiency, reliability and ease of maintenance are very important for such engines, whilst high power output and quiet operation are negligible. Therefore, mechanically controlled fuel injection and air-cooling are still very common. The common power outputs of non-road diesel engines vary a lot, with the smallest units starting at 3 kW, and the most powerful engines being heavy duty lorry engines.

Stationary diesel engines

Stationary diesel engines are commonly used for electricity generation, but also for powering refrigerator compressors, or other types of compressors or pumps. Usually, these engines run permanently, either with mostly partial load, or intermittently, with full load. Stationary diesel engines powering electric generators that put out an alternating current, usually operate with alternating load, but fixed rotational frequency. This is due to the mains' fixed frequency of either 50 Hz, or 60 Hz. The engine's crankshaft rotational frequency is chosen so that the mains' frequency is a multiple of it. For practical reasons, this results in crankshaft rotational frequencies of either 25 Hz or 30 Hz.

Low heat rejection engines

A special class of prototype internal combustion piston engines has been developed over several decades with the goal of improving efficiency by reducing heat loss. These engines are variously called adiabatic engines; due to better approximation of adiabatic expansion; low heat rejection engines, or high temperature engines. They are generally piston engines with combustion chamber parts lined with ceramic thermal barrier coatings. Some make use of pistons and other parts made of titanium which has a low thermal conductivity and density. Some designs are able to eliminate the use of a cooling system and associated parasitic losses altogether. Developing lubricants able to withstand the higher temperatures involved has been a major barrier to commercialization.

Future developments

In mid-2010s literature, main development goals for future diesel engines are described as improvements of exhaust emissions, reduction of fuel consumption, and increase of lifespan. It is said that the diesel engine, especially the diesel engine for commercial vehicles, will remain the most important vehicle powerplant until the mid-2030s. Editors assume that the complexity of the diesel engine will increase further. Some editors expect a future convergency of diesel and Otto engines' operating principles due to Otto engine development steps made towards homogeneous charge compression ignition.

Patents