Gravity Probe A
Gravity Probe A was a space-based experiment to test the equivalence principle, a feature of Einstein's theory of relativity. It was performed jointly by the Smithsonian Astrophysical Observatory and the National Aeronautics and Space Administration. The experiment sent a hydrogen masera highly accurate frequency standardinto space to measure with high precision the rate at which time passes in a weaker gravitational field. Masses cause distortions in spacetime, which leads to the effects of length contraction and time dilation, both predicted results of Albert Einstein's theory of general relativity. Because of the bending of spacetime, an observer on Earth should measure a slower rate at which time passes than an observer that is higher in altitude. This effect is known as gravitational time dilation.
The experiment was a test of a major consequence of Einstein's general relativity, the equivalence principle. The equivalence principle states that a reference frame in a uniform gravitational field is indistinguishable from a reference frame that is under uniform acceleration. Further, the equivalence principle predicts that phenomenon of different time flow rates, present in a uniformly accelerating reference frame, will also be present in a stationary reference frame that is in a uniform gravitational field.
The probe was launched on June 18, 1976 from the NASA-Wallops Flight Center in Wallops Island, Virginia. The probe was carried via a Scout rocket, and attained a height of, while remaining in space for 1 hour and 55 minutes, as intended. It returned to Earth by splashing down into the Atlantic Ocean.
Background
The objective of the Gravity Probe A experiment was to test the validity of the equivalence principle. The equivalence principle is a key component of Albert Einstein's theory of general relativity, and states that the laws of physics are the same in an accelerating reference frame as they are in a reference frame that is acted upon by a uniform gravitational field.Equivalence principle
The equivalence principle can be understood by comparing a rocket ship in two scenarios. First, imagine a rocket ship that is at rest on the Earth's surface; objects dropped within the rocket ship will fall towards the floor with an acceleration of. Now, imagine a distant rocket ship that has escaped Earth's gravitational field and is accelerating at a constant due to thrust from its rockets; objects in the rocket ship that are unconstrained will move towards the floor with an acceleration of. This example shows one way that a uniformly accelerating reference frame is indistinguishable from a gravitational reference frame.Furthermore, the equivalence principle postulates that phenomena that are caused by inertial effects will also be present due to gravitational effects. Consider a beam of light that is shined horizontally across a rocket ship, which is accelerating. According to a non-accelerating observer outside the rocket ship, the floor of the rocket ship accelerates towards the light beam. Therefore, the light beam does not seem to travel on a horizontal path according to the inside observer, rather the light ray appears to bend toward the floor. This is an example of an inertial effect that causes light to bend. The equivalence principle states that this inertial phenomenon will occur in a gravitational reference frame as well. Indeed, the phenomenon of gravitational lensing states that matter can bend light, and this phenomenon has been observed by the Hubble Telescope, and other experiments.
Time dilation
Time dilation refers to the expansion or contraction in the rate at which time passes, and was the subject of the Gravity Probe A experiment. Under Einstein's theory of general relativity, matter distorts the surrounding spacetime. This distortion causes time to pass more slowly in the vicinity of a massive object, compared to the rate experienced by a distant observer. The Schwarzschild metric, surrounding a spherically symmetric gravitating body, has a smaller coefficient at closer to the body, which means slower rate of time flow there.There is a similar idea of time dilation occurrence in Einstein's theory of special relativity. Such time dilation appears in the Rindler coordinates, attached to a uniformly accelerating particle in a flat spacetime. Such a particle would observe time passing faster on the side it is accelerating towards and more slowly on the opposite side. From this apparent variance in time, Einstein inferred that change in velocity affects the relativity of simultaneity for the particle. Einstein's equivalence principle generalizes this analogy, stating that an accelerating reference frame is locally indistinguishable from an inertial reference frame with a gravity force acting upon it. In this way, the Gravity Probe A was a test of the equivalence principle, matching the observations in the inertial reference frame of the Earth's surface affected by gravity, with the predictions of special relativity for the same frame treated as being accelerating upwards with respect to free fall reference, which can thought of being inertial and gravity-less.
Experimental setup
The Gravity Probe A spacecraft housed an atomic hydrogen maser system that operated throughout the mission. Maser is an acronym for microwave amplification by stimulated emission of radiation, and is similar to a laser, as it produces coherent electromagnetic waves in the microwave region of the electromagnetic spectrum. A hydrogen maser produces a very accurate signal, which is highly stableto one part in a quadrillion. This is equivalent to a clock that drifts by less than two seconds every 100 million years.The probe was launched nearly vertically upward to cause a large change in the gravitational potential, reaching a height of. At this height, general relativity predicted a clock should run 4.5 parts in faster than one on the Earth, or about one second every 73 years. The maser oscillations represented the ticks of a clock, and by measuring the frequency of the maser as it changed elevation, the effects of gravitational time dilation were detected.
Doppler shift
Along with the hydrogen maser, a microwave repeater was also included in the probe in order to measure the Doppler shift of the maser signal. A Doppler shift occurs when a source is moving relative to the observer of that source, and results in a shift in the frequency that corresponds to the direction and magnitude of the relative motion. The maser's signal was Doppler shifted because it launched vertically at a high speed relative to the ground station on the Earth.Results
The goal of the experiment was to measure the rate at which time passes in a higher gravitational potential, so to test this the maser in the probe was compared to a similar maser that remained on Earth. Before the two clock rates could be compared, the Doppler shift was subtracted from the clock rate measured by the maser that was sent into space, to correct for the relative motion between the observers on Earth and the motion of the probe. The two clock rates were then compared and further compared against the theoretical predictions of how the two clock rates should differ. The stability of the maser permitted measurement of changes in the rate of the maser of 1 part in for a 100-second measurement.The experiment was thus able to test the equivalence principle. Gravity Probe A confirmed the prediction that deeper in the gravity well time flows slower, and the observed effects matched the predicted effects to an accuracy of about 70 parts per million.