Jupiter Icy Moons Explorer


The JUpiter ICy moons Explorer is an interplanetary spacecraft in development by the European Space Agency with Airbus Defence and Space as the main contractor. The mission will study three of Jupiter's Galilean moons: Ganymede, Callisto, and Europa all of which are thought to have significant bodies of liquid water beneath their surfaces, making them potentially habitable environments.
The spacecraft is set for launch in June 2022 and will reach Jupiter in October 2029 after five gravity assists and 88 months of travel. By September 2032 the spacecraft will enter orbit around Ganymede for its close up science mission and becoming the first spacecraft to orbit a moon other than the moon of Earth. The selection of this mission for the L1 launch slot of ESA's Cosmic Vision science programme was announced on 2 May 2012. Its period of operations will overlap with NASA's Europa Clipper mission, launching in 2024.

History

The mission started as a reformulation of the Jupiter Ganymede Orbiter proposal, which was to be ESA's component of the cancelled Europa Jupiter System Mission – Laplace. It became a candidate for the first L-class mission of the ESA Cosmic Vision Programme, and its selection was announced on 2 May 2012.
In April 2012, JUICE was recommended over the proposed ATHENA X-ray telescope and a gravitational wave observatory. In July 2015, Airbus Defence and Space was selected as the prime contractor to design and build the probe, to be assembled in Toulouse, France.

Timeline

Launch and trajectory

JUICE will be launched in May 2022 by an Ariane 5 rocket. Following the launch, there is a planned first flyby of Earth in May 2023, Venus in October 2023, second flyby of Earth in September 2024, Mars in February 2025 and a final third flyby of Earth in November 2026, to put the JUICE on a trajectory to Jupiter.

Arrival to the Jovian system

In October 2029, when it arrives in Jupiter's system, JUICE will first perform a flyby of Ganymede in preparation for orbital insertion ≈7.5 hours later. The first orbit will be elongated, with the first Jupiter closest approach taking place in May 2030. After that, the orbits will be gradually closer to Jupiter, resulting in a circular orbit.
The first Europa flyby will take place in October 2030. JUICE will enter a high inclination orbit to allow exploration of Jupiter's polar regions. JUICE will study Jupiter's magnetosphere. Then a Callisto flyby in April 2031 will put JUICE on a normal equatorial orbit. Also, there is a transit of Europa and Io that will occur on 27 January 2032.

Orbital insertion on Ganymede

In September 2032, JUICE will enter an elliptical orbit around Ganymede, becoming the first spacecraft to orbit a moon other than Earth's. The first orbit will be at a distance of. In February 2033, JUICE will enter a circular orbit above the surface of Ganymede. JUICE will study Ganymede's composition and magnetosphere among other things.

Planned deorbit on Ganymede

When the spacecraft consumes its propellant, JUICE is planned to be deorbited and impact Ganymede in February 2034.

Science objectives

The Jupiter Icy moons Explorer orbiter will perform detailed investigations on Ganymede and evaluate its potential to support life. Investigations of Europa and Callisto will complete a comparative picture of these Galilean moons. The three moons are thought to harbour internal liquid water oceans, and so are central to understanding the habitability of icy worlds.
The main science objectives for Ganymede, and to a lesser extent for Callisto, are:
For Europa, the focus is on the chemistry essential to life, including organic molecules, and on understanding the formation of surface features and the composition of the non-water-ice material. Furthermore, JUICE will provide the first subsurface sounding of the moon, including the first determination of the minimal thickness of the icy crust over the most recently active regions.
More distant spatially resolved observations will also be carried out for several minor irregular satellites and the volcanically active moon Io.

Spacecraft

Design drivers

The main spacecraft design drivers are related to the large distance to the Sun, the use of solar power, and Jupiter's harsh radiation environment. The orbit insertions at Jupiter and Ganymede and the large number of flyby manoeuvres requires the spacecraft to carry about of chemical propellant.
Gravity assists include:
The Russian Space Research Institute is currently evaluating a Ganymede lander mission called Laplace-P, with emphasis in astrobiology. Cooperation and a possible synergy with JUICE Ganymede orbital mission is being discussed between ESA and Roscosmos. Russia had also proposed to power the JUICE spacecraft with a Russian-built radioisotope thermoelectric generator, replacing solar panels that would be vulnerable to Jupiter's radiation.

Science instruments

On 21 February 2013, after a competition, 11 science instruments were selected by ESA, which are being developed by science and engineering teams from all over Europe, with participation from the US.
Japan will also contribute several components for SWI, RPWI, GALA, PEP, JANUS and J-MAG instruments, and will facilitate testing.
Instrument nameAbbr.Description and scientific objectives
Jovis, Amorum ac Natorum Undique ScrutatorJANUSA camera system to image Ganymede and interesting parts of the surface of Callisto at better than 400 m/pixel. Selected targets will be investigated in high-resolution with a spatial resolution from 25 m/pixel down to 2.4 m/pixel with a 1.3° field of view. The camera system has 13 panchromatic, broad and narrow-band filters in the 0.36 µm to 1.1 µm range, and provides stereo imaging capabilities. JANUS will also allow relating spectral, laser and radar measurements to geomorphology and thus will provide the overall geological context.
Moons And Jupiter Imaging SpectrometerMAJISA visible and infrared imaging spectrograph operating from 500 nm to 5.50 µm, with spectral resolution of 3–7 nm, that will observe tropospheric cloud features and minor gas species on Jupiter and will investigate the composition of ices and minerals on the surfaces of the icy moons. The spatial resolution will be down to on Ganymede and about on Jupiter.
  • Principal investigator: Y. Langevin, Institut d'Astrophysique Spatiale, France.
  • Lead funding agency: CNES, France.
  • UV imaging SpectrographUVSAn imaging spectrograph operating in the wavelength range 55–210 nm with spectral resolution of <0.6 nm that will characterise exospheres and aurorae of the icy moons, including plume searches on Europa, and study the Jovian upper atmosphere and aurorae. Resolution up to observing Ganymede and up to observing Jupiter.
  • Principal investigator: R. Gladstone, Southwest Research Institute, USA.
  • Lead funding agency: NASA, USA.
  • Sub-millimeter Wave InstrumentSWIA spectrometer using a antenna and working in 1080–1275 GHz and 530–601 GHz with spectral resolving power of ~107 that will study Jupiter's stratosphere and troposphere, and the exospheres and surfaces of the icy moons.
  • Principal investigator: P. Hartogh, Max Planck Institute for Solar System Research, Germany.
  • Co-investigator: Y. Kasai NICT, Japan.
  • Lead funding agency: DLR, Germany.
  • GAnymede Laser AltimeterGALAA laser altimeter with a spot size and vertical resolution at intended for studying topography of icy moons and tidal deformations of Ganymede.
  • Principal investigator: H. Hussmann, DLR, Institute for Planetary Research, Germany.
  • Co-investigator: K. Enya, JAXA, Japan.
  • Lead funding agency: DLR, Germany.
  • Radar for Icy Moons ExplorationRIMEAn ice-penetrating radar working at frequency of 9 MHz emitted by a antenna; will be used to study the subsurface structure of Jovian moons down to depth with vertical resolution up to in ice.
  • Principal investigator: L. Bruzzone, University of Trento, Italy.
  • Lead funding agency: ASI, Italy.
  • JUICE MAGnetometerJ-MAGWill study the subsurface oceans of the icy moons and the interaction of Jovian magnetic field with the magnetic field of Ganymede using a sensitive magnetometer.
  • Principal investigator: Michele Dougherty, Imperial College London, UK
  • Co-investigators A. Matsuoka, Kyoto University, Japan.
  • Lead funding agency: UKSA, UK.
  • Particle Environment PackagePEPA suite of six sensors to study the magnetosphere of Jupiter and its interactions with the Jovian moons. PEP will measure positive and negative ions, electrons, exospheric neutral gas, thermal plasma and energetic neutral atoms present in all domains of the Jupiter system from 1 meV to 1 MeV energy.
  • Principal investigator: S. Barabash, Swedish Institute of Space Physics, Sweden.
  • Co-investigator: K. Asamura, JAXA, Japan.
  • Lead funding agency: SNSA, Sweden.
  • Radio & Plasma Wave InvestigationRPWIWill characterise the plasma environment and radio emissions around the spacecraft, it is composed of four experiments: GANDALF, MIME, FRODO and JENRAGE. RPWI will use four Langmuir probes, each one mounted at the end of its own dedicated boom, and sensitive up to 1.6 MHz to characterize plasma and receivers in the frequency range 80 kHz – 45 MHz to measure radio emissions.
  • Principal investigator: J.-E. Wahlund, Swedish Institute of Space Physics, Sweden.
  • Co-investigator: Y. Kasaba Tohoku University, Japan.
  • Lead funding agency: SNSA, Sweden.
  • Gravity & Geophysics of jupiter and Galilean Moons3GM3GM is a radio science package comprising a Ka transponder and an ultrastable oscillator. 3GM will be used to study the gravity field – up to degree 10 – at Ganymede and the extent of internal oceans on the icy moons, and to investigate the structure of the neutral atmospheres and ionospheres of Jupiter and its moons.
  • Principal investigator: L. Iess, Sapienza University of Rome, Italy.
  • Lead funding agency: ASI, Italy.
  • Planetary Radio Interferometer & Doppler ExperimentPRIDEThe experiment will generate specific signals transmitted by JUICE's antenna and received by Very Long Baseline Interferometry to perform precision measurements of the gravity fields of Jupiter and its icy moons.
  • Principal investigator: L. Gurvits, Joint Institute for VLBI in Europe, The Netherlands.
  • Lead funding agency: NWO and NSO, The Netherlands.
  • Targets

    The craft will have encounters with three planets and the Moon before arriving at Jupiter.