Edible oil refinery which converts cooking oil into a product that is uniform in taste, smell and appearance, and stability;
natural gas processing plant, which purifies and converts raw natural gas into residential, commercial and industrial fuel gas, and also recovers natural gas liquids such as ethane, propane, butanes and pentanes;
iron refining, a stage of refining pig iron, before fining, which converts pig iron into bar iron or steel
A typical oil refinery
The image below is a schematic flow diagram of a typical oil refinery depicting various unit processes and the flow of intermediate products between the inlet crude oil feedstock and the final products. The diagram depicts only one of the hundreds of different configurations. It does not include any of the usual facilities providing utilities such as steam, cooling water, and electric power as well as storage tanks for crude oil feedstock and for intermediate products and end products.
The image below is a schematic block flow diagram of a typical natural gas processing plant. It shows various unit processes converting raw natural gas into gas pipelined to end users. The block flow diagram also shows how processing of the raw natural gas yields byproduct sulfur, byproduct ethane, and natural gas liquids propane, butanes and natural gasoline.
Sugar refining
Sugar is generally produced from sugarcane or sugar beets. However, the global production of sugar from sugarcane is at least twice the production from sugar beets. Therefore, this section focuses on sugar from sugarcane.
Milling
Sugarcane is traditionally refined into sugar in two stages. In the first stage, raw sugar is produced by the milling of freshly harvested sugarcane. In a sugar mill, sugarcane is washed, chopped, and shredded by revolving knives. The shredded cane is mixed with water and crushed. The juices are collected and mixed with lime to adjust pH to 7, prevent decay into glucose and fructose, and precipitate impurities. The lime and other suspended solids are settled out, and the clarified juice is concentrated in a multiple-effect evaporator to make a syrup with about 60 weight percentsucrose. The syrup is further concentrated under vacuum until it becomes supersaturated, and then seeded with crystalline sugar. Upon cooling, sugar crystallizes out of the syrup. Centrifuging then separates the sugar from the remaining liquid. Raw sugar has a yellow to brown color. Sometimes sugar is consumed locally at this stage, but usually undergoes further purification. Sulfur dioxide is bubbled through the cane juice subsequent to crystallization in a process, known as "sulfitation". This process inhibits color forming reactions and stabilizes the sugar juices to produce “mill white” or “plantation white” sugar. The fibrous solids, called bagasse, remaining after the crushing of the shredded sugarcane, are burned for fuel, which helps a sugar mill to become self-sufficient in energy. Any excess bagasse can be used for animal feed, to produce paper, or burned to generate electricity for the local power grid., United States.