Snub dodecahedron


In geometry, the snub dodecahedron, or snub icosidodecahedron, is an Archimedean solid, one of thirteen convex isogonal nonprismatic solids constructed by two or more types of regular polygon faces.
The snub dodecahedron has 92 faces : 12 are pentagons and the other 80 are equilateral triangles. It also has 150 edges, and 60 vertices.
It has two distinct forms, which are mirror images of each other. The union of both forms is a compound of two snub dodecahedra, and the convex hull of both forms is a truncated icosidodecahedron.
Kepler first named it in Latin as dodecahedron simum in 1619 in his Harmonices Mundi. H. S. M. Coxeter, noting it could be derived equally from either the dodecahedron or the icosahedron, called it snub icosidodecahedron, with a vertical extended Schläfli symbol and flat Schläfli symbol sr.

Cartesian coordinates

Let be the real zero of the polynomial, where is the golden ratio. Let the point be given by
Let the matrix be given by
is the rotation around the axis through an angle of, counterclockwise. Let the linear transformations be the transformations which send a point to the even permutations of with an even number of minus signs. The transformations constitute the group of rotational symmetries of a regular tetrahedron. The transformations , constitute the group of rotational symmetries of a regular icosahedron. Then the 60 points are the vertices of a snub dodecahedron. The coordinates of the vertices are integral linear combinations of,,,, and. The edge length equals. Negating all coordinates gives the mirror image of this snub dodecahedron.
As a volume, the snub dodecahedron consists of 80 triangular and 12 pentagonal pyramids.
The volume of one triangular pyramid is given by:
and the volume of one pentagonal pyramid by:
The total volume is.
The circumradius equals.
The midradius equals. This gives an interesting geometrical interpretation of the number. The 20 "icosahedral" triangles of the snub dodecahedron described above are coplanar with the faces of a regular icosahedron. The midradius of this "circumscribed" icosahedron equals. This means that is the ratio between the midradii of a snub dodecahedron and the icosahedron in which it is inscribed.

Surface area and volume

For a snub dodecahedron whose edge length is 1, the surface area is
Its volume is, putting,
Its circumradius is
The four positive real roots of the sextic in
are the circumradii of the snub dodecahedron, great snub icosidodecahedron, great inverted snub icosidodecahedron, and great retrosnub icosidodecahedron.
The snub dodecahedron has the highest sphericity of all Archimedean solids. If sphericity is defined as the ratio of volume squared over surface area cubed, multiplied by a constant of 36 times pi, the sphericity of the snub dodecahedron is about 0.947.

Orthogonal projections

The snub dodecahedron has two especially symmetric orthogonal projections as shown below, centered on two types of faces: triangles and pentagons, corresponding to the A2 and H2 Coxeter planes.
Centered byFace
Triangle
Face
Pentagon
Edge
Solid
Wireframe
Projective
symmetry
+
Dual

Geometric relations

The snub dodecahedron can be generated by taking the twelve pentagonal faces of the dodecahedron and pulling them outward so they no longer touch. At a proper distance this can create the rhombicosidodecahedron by filling in square faces between the divided edges and triangle faces between the divided vertices. But for the snub form, pull the pentagonal faces out slightly less, only add the triangle faces and leave the other gaps empty. Then apply an equal rotation to the centers of the pentagons and triangles, continuing the rotation until the gaps can be filled by two equilateral triangles.
The snub dodecahedron can also be derived from the truncated icosidodecahedron by the process of alternation. Sixty of the vertices of the truncated icosidodecahedron form a polyhedron topologically equivalent to one snub dodecahedron; the remaining sixty form its mirror-image. The resulting polyhedron is vertex-transitive but not uniform.

Related polyhedra and tilings

This semiregular polyhedron is a member of a sequence of snubbed polyhedra and tilings with vertex figure and Coxeter–Dynkin diagram. These figures and their duals have rotational symmetry, being in the Euclidean plane for n = 6, and hyperbolic plane for any higher n. The series can be considered to begin with n = 2, with one set of faces degenerated into digons.

Snub dodecahedral graph

In the mathematical field of graph theory, a snub dodecahedral graph is the graph of vertices and edges of the snub dodecahedron, one of the Archimedean solids. It has 60 vertices and 150 edges, and is an Archimedean graph.