Transistor count


The transistor count is the number of transistors on an integrated circuit. It typically refers to the number of MOSFETs on an IC chip, as all modern ICs use MOSFETs. It is the most common measure of IC complexity. The rate at which MOS transistor counts have increased generally follows Moore's law, which observed that the transistor count doubles approximately every two years.
, the largest transistor count in a commercially available microprocessor is 39.54billion MOSFETs, in AMD's Zen 2 based Epyc Rome, which is a 3D integrated circuit fabricated using TSMC's 7 nm FinFET semiconductor manufacturing process., the highest transistor count in a graphics processing unit is Nvidia's GA100 Ampere with 54billion MOSFETs, manufactured using TSMC's 7 nm process., the highest transistor count in any IC chip is Samsung's 1TB eUFS V-NAND flash memory chip, with 2trillion floating-gate MOSFETs. As of 2019, the highest transistor count in a non-memory chip is a deep learning engine called the Wafer Scale Engine by Cerebras, using a special design to route around any non-functional core on the device; it has 1.2trillion MOSFETs, manufactured using TSMC's 16 nm FinFET process.
In terms of computer systems that consist of numerous integrated circuits, the supercomputer with the highest transistor count as of 2016 is the Chinese-designed Sunway TaihuLight, which has for all CPUs/nodes combined "about 400 trillion transistors in the processing part of the hardware" and "the DRAM includes about 12 quadrillion transistors, and that's about 97 percent of all the transistors." To compare, the smallest computer, as of 2018 dwarfed by a grain of rice, has on the order of 100,000 transistors, and the one, fully programmable, with the fewest transistors ever has 130 transistors or fewer.
In terms of the total number of transistors in existence, it has been estimated that a total of 13sextillion MOSFETs have been manufactured worldwide between 1960 and 2018, accounting for at least 99.9% of all transistors. This makes the MOSFET the most widely manufactured device in history.

Transistor count

Among the earliest products to use transistors were portable transistor radios, introduced in 1954, which typically used 4 to 8 transistors, often advertising the number on the radio's case. However, early junction transistors were relatively bulky devices that were difficult to manufacture on a mass-production basis, limiting the transistor counts and restricting their usage to a number of specialised applications.
The MOSFET, invented by Mohamed Atalla and Dawon Kahng at Bell Labs in 1959, was the first truly compact transistor that could be miniaturised and mass-produced for a wide range of uses. The MOSFET made it possible to build high-density integrated circuits, enabling Moore's law and very large-scale integration. Atalla first proposed the concept of the MOS integrated circuit chip in 1960, followed by Kahng in 1961, both noting that the MOSFET's ease of fabrication made it useful for integrated circuits. The earliest experimental MOS IC to be demonstrated was a 16-transistor chip built by Fred Heiman and Steven Hofstein at RCA Laboratories in 1962. Further large-scale integration was made possible with an improvement in MOSFET semiconductor device fabrication, the CMOS process, developed by Chih-Tang Sah and Frank Wanlass at Fairchild Semiconductor in 1963.

Microprocessors

A microprocessor incorporates the functions of a computer's central processing unit on a single integrated circuit. It is a multi-purpose, programmable device that accepts digital data as input, processes it according to instructions stored in its memory, and provides results as output.
The development of MOS integrated circuit technology in the 1960s led to the development of the first microprocessors. The 20-bit MP944, developed by Garrett AiResearch for the U.S. Navy's F-14 Tomcat fighter in 1970, is considered by its designer Ray Holt to be the first microprocessor. It was a multi-chip microprocessor, fabricated on six MOS chips. However, it was classified by the Navy until 1998. The 4-bit Intel 4004, released in 1971, was the first single-chip microprocessor. It was made possible with an improvement in MOSFET design, MOS silicon-gate technology, developed in 1968 at Fairchild Semiconductor by Federico Faggin, who went on to use MOS SGT technology to develop the 4004 with Marcian Hoff, Stanley Mazor and Masatoshi Shima at Intel.
All chips over e.g. a million transistors have much memory, usually cache memories in level 1 and 2 or more levels, accounting for most transistors on microprocessors in modern times, where large caches have become the norm. The level 1 caches of the Pentium Pro die accounted for over 14% of its transistors, while the much larger L2 cache was on a separate die, but on-package, so it's not included in the transistor count. Later chips included more levels, L2 or even L3 on-chip. The last DEC Alpha chip made has 90% of it for cache.
While Intel's i960CA small cache of 1 KB, at about 50,000 transistors, isn't a big part of the chip, it alone would have been very large in early microprocessors. In the ARM 3 chip, with 4 KB, the cache was over 63% of the chip, and in the Intel 80486 its larger cache is only over a third of it because the rest of the chip is more complex. So cache memories are the largest factor, except for in early chips with smaller caches or even earlier chips with no cache at all. Then the inherent complexity, e.g. number of instructions, is the dominant factor, more than e.g. the memory the registers of the chip represent.
ProcessorMOS transistor countDate of
introduction
DesignerMOS
process
Area
MP944 1970Garrett AiResearch
Intel 4004 2,2501971Intel10,000 nm12 mm2
TMX 1795 3,0781971Texas Instruments? nm30 mm2
Intel 8008 3,5001972Intel10,000 nm14 mm2
NEC μCOM-4 2,5001973NEC7,500 nm
Toshiba TLCS-12 11,000+1973Toshiba6,000 nm32 mm2
Intel 4040 3,0001974Intel10,000 nm12 mm2
Motorola 6800 4,1001974Motorola6,000 nm16 mm2
Intel 8080 6,0001974Intel6,000 nm20 mm2
TMS 1000 8,0001974Texas Instruments8,000 nm11 mm2
MOS Technology 6502 4,5281975MOS Technology8,000 nm21 mm2
Intersil IM6100 4,0001975Intersil
CDP 1801 5,0001975RCA
RCA 1802 5,0001976RCA5,000 nm27 mm2
Zilog Z80 8,5001976Zilog4,000 nm18 mm2
Intel 8085 6,5001976Intel3,000 nm20 mm2
TMS9900 8,0001976Texas Instruments
Motorola MC14500B 1977Motorola
Bellmac-8 7,0001977Bell Labs5,000 nm
Motorola 6809 9,0001978Motorola5,000 nm21 mm2
Intel 8086 29,0001978Intel3,000 nm33 mm2
Zilog Z8000 17,5001979Zilog
Intel 8088 29,0001979Intel3,000 nm33 mm2
Motorola 68000 68,0001979Motorola3,500 nm44 mm2
Intel 8051 50,0001980Intel
WDC 65C0211,5001981WDC3,000 nm6 mm2
ROMP 45,0001981IBM2,000 nm
Intel 80186 55,0001982Intel3,000 nm60 mm2
Intel 80286 134,0001982Intel1,500 nm49 mm2
WDC 65C816 22,0001983WDC3,000 nm9 mm2
NEC V2063,0001984NEC
Motorola 68020 190,0001984Motorola2,000 nm85 mm2
Intel 80386 275,0001985Intel1,500 nm104 mm2
ARM 1 25,0001985Acorn3,000 nm50 mm2
Novix NC4016 16,0001985Harris Corporation3,000 nm
SPARC MB86900 110,0001986Fujitsu1,200 nm
NEC V60 375,0001986NEC1,500 nm
ARM 2 27,0001986Acorn2,000 nm30.25 mm2
Z80000 91,0001986Zilog
NEC V70 385,0001987NEC1,500 nm
Hitachi Gmicro/200730,0001987Hitachi1,000 nm
Motorola 68030 273,0001987Motorola800 nm102 mm2
TI Explorer's 32-bit Lisp machine chip553,0001987Texas Instruments2,000 nm
DEC WRL MultiTitan180,0001988DEC WRL1,500 nm61 mm2
Intel i960 250,0001988Intel1,500 nm
Intel i960CA 600,0001989Intel800 nm143 mm2
Intel i860 1,000,0001989Intel
Intel 80486 1,180,2351989Intel1000 nm173 mm2
ARM 3 310,0001989Acorn1,500 nm87 mm2
Motorola 68040 1,200,0001990Motorola650 nm152 mm2
R4000 1,350,0001991MIPS1,000 nm213 mm2
ARM 6 35,0001991ARM800 nm
Hitachi SH-1 600,0001992Hitachi800 nm10 mm2
Intel i960CF 900,0001992Intel125 mm2
DEC Alpha 21064 1,680,0001992DEC750 nm233.52 mm2
Hitachi HARP-1 2,800,0001993Hitachi500 nm267 mm2
Pentium 3,100,0001993Intel800 nm294 mm2
ARM700 578,9771994ARM700 nm68.51 mm2
MuP21 7,0001994Offete Enterprises1200 nm
Motorola 68060 2,500,0001994Motorola600 nm218 mm2
SA-110 2,500,0001995Acorn/DEC/Apple350 nm50 mm2
Pentium Pro 5,500,0001995Intel500 nm307 mm2
AMD K5 4,300,0001996AMD500 nm251 mm2
Hitachi SH-4 10,000,0001997Hitachi200 nm42 mm2
Pentium II Klamath 7,500,0001997Intel350 nm195 mm2
AMD K6 8,800,0001997AMD350 nm162 mm2
F21 15,0001997Offete Enterprises
AVR 140,000 1997Nordic VLSI/Atmel
Pentium II Deschutes 7,500,0001998Intel250 nm113 mm2
ARM 9TDMI 111,0001999Acorn350 nm4.8 mm2
Pentium III Katmai 9,500,0001999Intel250 nm128 mm2
Emotion Engine 13,500,0001999Sony/Toshiba180 nm240 mm2
Pentium II Mobile Dixon 27,400,0001999Intel180 nm180 mm2
AMD K6-III 21,300,0001999AMD250 nm118 mm2
AMD K7 22,000,0001999AMD250 nm184 mm2
Gekko 21,000,0002000IBM/Nintendo180 nm43 mm2
Pentium III Coppermine 21,000,0002000Intel180 nm80 mm2
Pentium 4 Willamette 42,000,0002000Intel180 nm217 mm2
SPARC64 V 191,000,0002001Fujitsu130 nm290 mm2
Pentium III Tualatin 45,000,0002001Intel130 nm81 mm2
Pentium 4 Northwood 55,000,0002002Intel130 nm145 mm2
Itanium 2 McKinley 220,000,0002002Intel180 nm421 mm2
DEC Alpha 21364 152,000,0002003DEC180 nm397 mm2
Barton 54,300,0002003AMD130 nm101 mm2
AMD K8 105,900,0002003AMD130 nm193 mm2
Itanium 2 Madison 6M 410,000,0002003Intel130 nm374 mm2
Pentium 4 Prescott 112,000,0002004Intel90 nm110 mm2
SPARC64 V+ 400,000,0002004Fujitsu90 nm294 mm2
Itanium 2 592,000,0002004Intel130 nm432 mm2
Pentium 4 Prescott-2M 169,000,0002005Intel90 nm143 mm2
Pentium D Smithfield 228,000,0002005Intel90 nm206 mm2
Xenon 165,000,0002005IBM90 nm
Cell 250,000,0002005Sony/IBM/Toshiba90 nm221 mm2
Pentium 4 Cedar Mill 184,000,0002006Intel65 nm90 mm2
Pentium D Presler 362,000,0002006Intel65 nm162 mm2
Core 2 Duo Conroe 291,000,0002006Intel65 nm143 mm2
Dual-core Itanium 2 1,700,000,0002006Intel90 nm596 mm2
AMD K10 quad-core 2M L3 463,000,0002007AMD65 nm283 mm2
ARM Cortex-A9 26,000,0002007ARM45 nm31 mm2
Core 2 Duo Wolfdale 411,000,0002007Intel45 nm107 mm2
POWER6 789,000,0002007IBM65 nm341 mm2
Core 2 Duo Allendale 169,000,0002007Intel65 nm111 mm2
Uniphier250,000,0002007Matsushita45 nm
SPARC64 VI 540,000,0002007Fujitsu90 nm421 mm2
Core 2 Duo Wolfdale 3M 230,000,0002008Intel45 nm83 mm2
Core i7 731,000,0002008Intel45 nm263 mm2
AMD K10 quad-core 6M L3 758,000,0002008AMD45 nm258 mm2
Atom 47,000,0002008Intel45 nm24 mm2
SPARC64 VII 600,000,0002008Fujitsu65 nm445 mm2
Six-core Xeon 7400 1,900,000,0002008Intel45 nm503 mm2
Six-core Opteron 2400 904,000,0002009AMD45 nm346 mm2
SPARC64 VIIIfx 760,000,0002009Fujitsu45 nm513 mm2
16-core SPARC T3 1,000,000,0002010Sun/Oracle40 nm377 mm2
Six-core Core i7 1,170,000,0002010Intel32 nm240 mm2
8-core POWER7 32M L3 1,200,000,0002010IBM45 nm567 mm2
Quad-core z196 1,400,000,0002010IBM45 nm512 mm2
Quad-core Itanium Tukwila 2,000,000,0002010Intel65 nm699 mm2
8-core Xeon Nehalem-EX 2,300,000,0002010Intel45 nm684 mm2
SPARC64 IXfx 1,870,000,0002011Fujitsu40 nm484 mm2
Quad-core + GPU Core i7 1,160,000,0002011Intel32 nm216 mm2
Six-core Core i7/8-core Xeon E5
2,270,000,0002011Intel32 nm434 mm2
10-core Xeon Westmere-EX 2,600,000,0002011Intel32 nm512 mm2
Atom "Medfield" 432,000,0002012Intel32 nm64 mm2
SPARC64 X 2,990,000,0002012Fujitsu28 nm600 mm2
8-core AMD Bulldozer 1,200,000,0002012AMD32 nm315 mm2
Quad-core + GPU AMD Trinity 1,303,000,0002012AMD32 nm246 mm2
Quad-core + GPU Core i7 Ivy Bridge 1,400,000,0002012Intel22 nm160 mm2
8-core POWER7+ 2,100,000,0002012IBM32 nm567 mm2
Six-core zEC12 2,750,000,0002012IBM32 nm597 mm2
8-core Itanium Poulson 3,100,000,0002012Intel32 nm544 mm2
61-core Xeon Phi 5,000,000,0002012Intel22 nm720 mm2
Apple A7 1,000,000,0002013Apple28 nm102 mm2
Six-core Core i7 Ivy Bridge E 1,860,000,0002013Intel22 nm256 mm2
12-core POWER8 4,200,000,0002013IBM22 nm650 mm2
Xbox One main SoC 5,000,000,0002013Microsoft/AMD28 nm363 mm2
Quad-core + GPU Core i7 Haswell 1,400,000,0002014Intel22 nm177 mm2
Apple A8 2,000,000,0002014Apple20 nm89 mm2
8-core Core i7 Haswell-E 2,600,000,0002014Intel22 nm355 mm2
Apple A8X 3,000,000,0002014Apple20 nm128 mm2
15-core Xeon Ivy Bridge-EX 4,310,000,0002014Intel22 nm541 mm2
18-core Xeon Haswell-E5 5,560,000,0002014Intel22 nm661 mm2
Quad-core + GPU GT2 Core i7 Skylake K 1,750,000,0002015Intel14 nm122 mm2
Dual-core + GPU Iris Core i7 Broadwell-U 1,900,000,0002015Intel14 nm133 mm2
Apple A9 2,000,000,000+2015Apple14 nm
96 mm2
Apple A9 2,000,000,000+2015Apple16 nm
104.5 mm2
Apple A9X 3,000,000,000+2015Apple16 nm143.9 mm2
IBM z13 3,990,000,0002015IBM22 nm678 mm2
IBM z13 Storage Controller7,100,000,0002015IBM22 nm678 mm2
32-core SPARC M7 10,000,000,0002015Oracle20 nm
Qualcomm Snapdragon 835 3,000,000,0002016Qualcomm10 nm72.3 mm2
10-core Core i7 Broadwell-E 3,200,000,0002016Intel14 nm246 mm2
Apple A10 Fusion 3,300,000,0002016Apple16 nm125 mm2
HiSilicon Kirin 960 4,000,000,0002016Huawei16 nm110.00 mm2
22-core Xeon Broadwell-E5 7,200,000,0002016Intel14 nm456 mm2
72-core Xeon Phi 8,000,000,0002016Intel14 nm683 mm2
Zip CPU 1,286 6-LUTs2016Gisselquist Technology
Qualcomm Snapdragon 845 5,300,000,0002017Qualcomm10 nm94 mm2
Qualcomm Snapdragon 850 5,300,000,0002017Qualcomm10 nm94 mm2
Apple A11 Bionic 4,300,000,0002017Apple10 nm89.23 mm2
Zeppelin SoC Ryzen 4,800,000,0002017AMD14 nm192 mm2
Ryzen 5 1600 Ryzen 4,800,000,0002017AMD14 nm213 mm2
Ryzen 5 1600 X Ryzen 4,800,000,0002017AMD14 nm213 mm2
IBM z14 6,100,000,0002017IBM14 nm696 mm2
IBM z14 Storage Controller 9,700,000,0002017IBM14 nm696 mm2
HiSilicon Kirin 970 5,500,000,0002017Huawei10 nm96.72 mm2
Xbox One X main SoC 7,000,000,0002017Microsoft/AMD16 nm360 mm2
28-core Xeon Platinum 8180 8,000,000,0002017Intel14 nm
POWER9 8,000,000,0002017IBM14 nm695 mm2
Freedom U500 Base Platform Chip RISC-V 250,000,0002017SiFive28 nm~30 mm2
SPARC64 XII 5,450,000,0002017Fujitsu20 nm795 mm2
Apple A10X Fusion 4,300,000,0002017Apple10 nm96.40 mm2
Centriq 2400 18,000,000,0002017Qualcomm10 nm398 mm2
32-core AMD Epyc 19,200,000,0002017AMD14 nm768 mm2
Qualcomm Snapdragon 710 2018Qualcomm10 nm
Qualcomm Snapdragon 675 2018Qualcomm11 nm
Qualcomm Snapdragon 855 2018Qualcomm7 nm73.27 mm2
Qualcomm Snapdragon 8cx / SCX8180 8,500,000,0002018Qualcomm7 nm112 mm2
Apple A12 Bionic 6,900,000,0002018Apple7 nm83.27 mm2
HiSilicon Kirin 980 6,900,000,0002018Huawei7 nm74.13 mm2
HiSilicon Kirin 990 5G10,300,000,0002019Huawei7 nm113.31 mm2
HiSilicon Kirin 990 4G8,000,000,0002019Huawei7 nm90.00 mm2
HiSilicon Kirin 710 5,500,000,0002018Huawei12 nm
Apple A12X Bionic 10,000,000,0002018Apple7 nm122 mm2
Apple A13 8,500,000,0002019Apple7 nm98.48 mm2
Fujitsu A64FX 8,786,000,0002018Fujitsu7 nm
Tegra Xavier SoC 9,000,000,0002018Nvidia12 nm350 mm2
Samsung Exynos 9820 2019Samsung8 nm127 mm2
AMD Ryzen 7 3700X 5,990,000,0002019AMD7&12 nm 199 mm2
AMD Ryzen 9 3900X 9,890,000,0002019AMD7 & 12 nm 273 mm2
AMD Epyc Rome 39,540,000,0002019AMD7 & 12 nm 1088 mm2
AWS Graviton2 30,000,000,0002019Amazon7 nm

GPUs

A graphics processing unit is a specialized electronic circuit designed to rapidly manipulate and alter memory to accelerate the building of images in a frame buffer intended for output to a display.
The designer refers to the technology company that designs the logic of the integrated circuit chip. The manufacturer refers to the semiconductor company that fabricates the chip using its semiconductor manufacturing process at a foundry. The transistor count in a chip is dependent on a manufacturer's fabrication process, with smaller semiconductor nodes typically enabling higher transistor density and thus higher transistor counts.
The random-access memory that comes with GPUs greatly increase the total transistor count, with the memory typically accounting for the majority of transistors in a graphics card. For example, Nvidia's Tesla P100 has 15billion FinFETs in the GPU in addition to 16GB of HBM2 memory, totaling about 150billion MOSFETs on the graphics card. The following table does not include the memory. For memory transistor counts, see the [|Memory] section below.
ProcessorMOS transistor countDate of introductionDesignerManufacturerMOS processArea
µPD7220 GDC40,0001982NECNEC5,000 nm
ARTC HD6348460,0001984HitachiHitachi
YM7101 VDP100,0001988SegaYamaha
Tom & Jerry750,0001993FlareIBM
VDP11,000,0001994SegaHitachi500 nm
Sony GPU1,000,0001994ToshibaLSI500 nm
NV11,000,0001995Nvidia, SegaSGS500 nm90 mm2
Reality Coprocessor2,600,0001996SGINEC350 nm81 mm2
PowerVR1,200,0001996VideoLogicNEC350 nm
Voodoo Graphics1,000,00019963dfxTSMC500 nm
Voodoo Rush1,000,00019973dfxTSMC500 nm
NV33,500,0001997NvidiaSGS, TSMC350 nm90 mm2
PowerVR2 CLX210,000,0001998VideoLogicNEC250 nm116 mm2
i7403,500,0001998Intel, Real3DReal3D350 nm
Voodoo 24,000,00019983dfxTSMC350 nm
Voodoo Rush4,000,00019983dfxTSMC350 nm
Riva TNT7,000,0001998NvidiaTSMC350 nm
PowerVR2 PMX16,000,0001999VideoLogicNEC250 nm
Rage 1288,000,0001999ATITSMC, UMC250 nm70 mm2
Voodoo 38,100,00019993dfxTSMC250 nm
Graphics Synthesizer43,000,0001999Sony, ToshibaSony, Toshiba180 nm279 mm2
NV515,000,0001999NvidiaTSMC250 nm
NV1017,000,0001999NvidiaTSMC220 nm111 mm2
Voodoo 414,000,00020003dfxTSMC220 nm
NV1120,000,0002000NvidiaTSMC180 nm65 mm2
NV1525,000,0002000NvidiaTSMC180 nm81 mm2
Voodoo 528,000,00020003dfxTSMC220 nm
R10030,000,0002000ATITSMC180 nm97 mm2
Flipper51,000,0002000ArtXNEC180 nm106 mm2
PowerVR3 KYRO14,000,0002001ImaginationST250 nm
PowerVR3 KYRO II15,000,0002001ImaginationST180 nm
NV2A60,000,0002001NvidiaTSMC150 nm
NV2057,000,0002001NvidiaTSMC150 nm128 mm2
R20060,000,0002001ATITSMC150 nm68 mm2
NV2563,000,0002002NvidiaTSMC150 nm142 mm2
R300107,000,0002002ATITSMC150 nm218 mm2
R360117,000,0002003ATITSMC150 nm218 mm2
NV38135,000,0002003NvidiaTSMC130 nm207 mm2
R480160,000,0002004ATITSMC130 nm297 mm2
NV40222,000,0002004NvidiaIBM130 nm305 mm2
Xenos232,000,0002005ATITSMC90 nm182 mm2
RSX Reality Synthesizer300,000,0002005Nvidia, SonySony90 nm186 mm2
G70303,000,0002005NvidiaTSMC, Chartered110 nm333 mm2
R520321,000,0002005ATITSMC90 nm288 mm2
R580384,000,0002006ATITSMC90 nm352 mm2
G80681,000,0002006NvidiaTSMC90 nm480 mm2
G86 Tesla210,000,0002007NvidiaTSMC80 nm127 mm2
G84 Tesla289,000,0002007NvidiaTSMC80 nm169 mm2
R600700,000,0002007ATITSMC80 nm420 mm2
G92754,000,0002007NvidiaTSMC, UMC65 nm324 mm2
G98 Tesla210,000,0002008NvidiaTSMC65 nm86 mm2
RV710242,000,0002008ATITSMC55 nm73 mm2
G96 Tesla314,000,0002008NvidiaTSMC55 nm121 mm2
G94 Tesla505,000,0002008NvidiaTSMC65 nm240 mm2
RV730514,000,0002008ATITSMC55 nm146 mm2
RV670666,000,0002008ATITSMC55 nm192 mm2
RV770956,000,0002008ATITSMC55 nm256 mm2
RV790959,000,0002008ATITSMC55 nm282 mm2
GT200b Tesla1,400,000,0002008NvidiaTSMC, UMC55 nm470 mm2
GT200 Tesla1,400,000,0002008NvidiaTSMC65 nm576 mm2
GT218 Tesla260,000,0002009NvidiaTSMC40 nm57 mm2
GT216 Tesla486,000,0002009NvidiaTSMC40 nm100 mm2
GT215 Tesla727,000,0002009NvidiaTSMC40 nm144 mm2
RV740826,000,0002009ATITSMC40 nm137 mm2
Juniper RV8401,040,000,0002009ATITSMC40 nm166 mm2
Cypress RV8702,154,000,0002009ATITSMC40 nm334 mm2
Cedar RV810292,000,0002010AMD TSMC40 nm59 mm2
Redwood RV830627,000,0002010AMDTSMC40 nm104 mm2
GF106 Fermi1,170,000,0002010NvidiaTSMC40 nm238 mm2
Barts RV9401,700,000,0002010AMDTSMC40 nm255 mm2
Cayman RV9702,640,000,0002010AMDTSMC40 nm389 mm2
GF100 Fermi3,200,000,000NvidiaTSMC40 nm526 mm2
GF110 Fermi3,000,000,000NvidiaTSMC40 nm520 mm2
GF119 Fermi292,000,0002011NvidiaTSMC40 nm79 mm2
Caicos RV910370,000,0002011AMDTSMC40 nm67 mm2
GF108 Fermi585,000,0002011NvidiaTSMC40 nm116 mm2
Turks RV930716,000,0002011AMDTSMC40 nm118 mm2
GF104 Fermi1,950,000,0002011NvidiaTSMC40 nm332 mm2
Tahiti4,312,711,8732011AMDTSMC28 nm365 mm2
GK107 Kepler1,270,000,0002012NvidiaTSMC28 nm118 mm2
Cape Verde1,500,000,0002012AMDTSMC28 nm123 mm2
GK106 Kepler2,540,000,0002012NvidiaTSMC28 nm221 mm2
Pitcairn2,800,000,0002012AMDTSMC28 nm212 mm2
GK104 Kepler3,540,000,0002012NvidiaTSMC28 nm294 mm2
GK110 Kepler7,080,000,0002012NvidiaTSMC28 nm561 mm2
Oland1,040,000,0002013AMDTSMC28 nm90 mm2
Bonaire2,080,000,0002013AMDTSMC28 nm160 mm2
Durango 5,000,000,0002013AMDTSMC28 nm363 mm2
Liverpool Unknown2013AMDTSMC28 nm348 mm2
Hawaii6,300,000,0002013AMDTSMC28 nm438 mm2
GM107 Maxwell1,870,000,0002014NvidiaTSMC28 nm148 mm2
GM206 Maxwell2,940,000,0002014NvidiaTSMC28 nm228 mm2
Tonga5,000,000,0002014AMDTSMC, GlobalFoundries28 nm366 mm2
GM204 Maxwell5,200,000,0002014NvidiaTSMC28 nm398 mm2
GM200 Maxwell8,000,000,0002015NvidiaTSMC28 nm601 mm2
Fiji8,900,000,0002015AMDTSMC28 nm596 mm2
Polaris 11 "Baffin"3,000,000,0002016AMDSamsung, GlobalFoundries14 nm123 mm2
GP108 Pascal4,400,000,0002016NvidiaTSMC16 nm200 mm2
Durango 2 5,000,000,0002016AMDTSMC16 nm240 mm2
Neo 5,700,000,0002016AMDTSMC16 nm325 mm2
Polaris 10 "Ellesmere"5,700,000,0002016AMDSamsung, GlobalFoundries14 nm232 mm2
GP104 Pascal7,200,000,0002016NvidiaTSMC16 nm314 mm2
GP100 Pascal15,300,000,0002016NvidiaTSMC, Samsung16 nm610 mm2
GP108 Pascal1,850,000,0002017NvidiaSamsung14 nm74 mm2
Polaris 12 "Lexa"2,200,000,0002017AMDSamsung, GlobalFoundries14 nm101 mm2
GP107 Pascal3,300,000,0002017NvidiaSamsung14 nm132 mm2
Scorpio 7,000,000,0002017AMDTSMC16 nm359 mm2
GP102 Pascal11,800,000,0002017NvidiaTSMC, Samsung16 nm471 mm2
Vega 1012,500,000,0002017AMDSamsung, GlobalFoundries14 nm484 mm2
GV100 Volta21,100,000,0002017NvidiaTSMC12 nm815 mm2
TU106 Turing10,800,000,0002018NvidiaTSMC12 nm445 mm2
Vega 2013,230,000,0002018AMDTSMC7 nm331 mm2
TU104 Turing13,600,000,0002018NvidiaTSMC12 nm545 mm2
TU102 Turing18,600,000,0002018NvidiaTSMC12 nm754 mm2
TU117 Turing4,700,000,0002019NvidiaTSMC12 nm200 mm2
TU116 Turing6,600,000,0002019NvidiaTSMC12 nm284 mm2
Navi 146,400,000,0002019AMDTSMC7 nm158 mm2
Navi 1010,300,000,0002019AMDTSMC7 nm251 mm2
GA100 Ampere54,000,000,0002020NvidiaTSMC7 nm826 mm2

FPGA

A field-programmable gate array is an integrated circuit designed to be configured by a customer or a designer after manufacturing.
FPGAMOS transistor countDate of introductionDesignerManufacturerMOS processArea
Virtex70,000,0001997Xilinx
Virtex-E200,000,0001998Xilinx
Virtex-II350,000,0002000Xilinx130 nm
Virtex-II PRO430,000,0002002Xilinx
Virtex-41,000,000,0002004Xilinx90 nm
Virtex-51,100,000,0002006XilinxTSMC65 nm
Stratix IV2,500,000,0002008AlteraTSMC40 nm
Stratix V3,800,000,0002011AlteraTSMC28 nm
Arria 105,300,000,0002014AlteraTSMC20 nm
Virtex-7 2000T6,800,000,0002011XilinxTSMC28 nm
Stratix 10 SX 280017,000,000,000TBDIntelIntel14 nm560 mm2
Virtex-Ultrascale VU44020,000,000,000Q1 2015XilinxTSMC20 nm
Virtex-Ultrascale+ VU19P35,000,000,0002020XilinxTSMC16 nm900 mm2
Versal VC190237,000,000,0002H 2019XilinxTSMC7 nm
Stratix 10 GX 10M43,300,000,000Q4 2019IntelIntel14 nm1400 mm2

Memory

is an electronic data storage device, often used as computer memory, implemented on integrated circuits. Nearly all semiconductor memory since the 1970s have used MOSFETs, replacing earlier bipolar junction transistors. There are two major types of semiconductor memory, random-access memory and non-volatile memory. In turn, there are two major RAM types, dynamic random-access memory and static random-access memory, as well as two major NVM types, flash memory and read-only memory.
Typical CMOS SRAM consists of six transistors per cell. For DRAM, 1T1C, which means one transistor and one capacitor structure, is common. Capacitor charged or not is used to store 1 or 0. For flash memory, the data is stored in floating gate, and the resistance of the transistor is sensed to interpret the data stored. Depending on how fine scale the resistance could be separated, one transistor could store up to 3-bits, meaning eight distinctive level of resistance possible per transistor. However, the fine the scale comes with cost of repeatability therefore reliability. Typically, low grade 2-bits MLC flash is used for flash drives, so a 16 GB flash drive contains roughly 64 billion transistors.
For SRAM chips, six-transistor cells was the standard. DRAM chips during the early 1970s had three-transistor cells, before single-transistor cells became standard since the era of 4Kb DRAM in the mid-1970s. In single-level flash memory, each cell contains one floating-gate MOSFET, whereas multi-level flash contains 2, 3 or 4 bits per transistor.
Flash memory chips are commonly stacked up in layers, up to 128-layer in production, and 136-layer managed, and available in end-user devices up to 69-layer from manufacturers.
Chip nameCapacity RAM typeTransistor countDate of introductionManufacturerMOS processArea
1-bitSRAM 61963Fairchild
1-bitDRAM 11965Toshiba
8-bitSRAM 481965SDS, Signetics
SP9516-bitSRAM 801965IBM
TMC316216-bitSRAM 961966Transitron
SRAM 1966NEC
256-bitDRAM 2561968Fairchild
64-bitSRAM 3841968Fairchild
144-bitSRAM 8641968NEC
1101256-bitSRAM 1,5361969Intel12,000 nm
11021 KbDRAM 3,0721970Intel, Honeywell
11031 KbDRAM 3,0721970Intel8,000 nm10 mm2
μPD4031 KbDRAM 3,0721971NEC
2 KbDRAM 6,1441971General Instrument12.7 mm2
21021 KbSRAM 6,1441972Intel
8 KbDRAM 8,1921973IBM18.8 mm2
51011 KbSRAM 6,1441974Intel
211616 KbDRAM 16,3841975Intel
21144 KbSRAM 24,5761976Intel
4 KbSRAM 24,5761977Toshiba
64 KbDRAM 65,5361977NTT35.4 mm2
64 KbDRAM 65,5361979Siemens25.2 mm2
16 KbSRAM 98,3041980Hitachi, Toshiba
256 KbDRAM 262,1441980NEC1,500 nm41.6 mm2
256 KbDRAM 262,1441980NTT1,000 nm34.4 mm2
64 KbSRAM 393,2161980Matsushita
288 KbDRAM294,9121981IBM25 mm2
64 KbSRAM 393,2161982Intel1,500 nm
256 KbSRAM 1,572,8641984Toshiba1,200 nm
8 MbDRAM8,388,608Hitachi
16 MbDRAM 16,777,2161987NTT700 nm148 mm2
4 MbSRAM 25,165,8241990NEC, Toshiba, Hitachi, Mitsubishi
64 MbDRAM 67,108,8641991Matsushita, Mitsubishi, Fujitsu, Toshiba400 nm
KM48SL200016 MbSDRAM16,777,2161992Samsung
16 MbSRAM 100,663,2961992Fujitsu, NEC400 nm
256 MbDRAM 268,435,4561993Hitachi, NEC250 nm
1 GbDRAM1,073,741,824NEC250 nm
1 GbDRAM1,073,741,824Hitachi160 nm
1 GbSDRAM1,073,741,8241996Mitsubishi150 nm
1 GbSDRAM 1,073,741,8241997Hyundai
4 GbDRAM 1,073,741,8241997NEC150 nm
4 GbDRAM4,294,967,2961998Hyundai
8 GbSDRAM 8,589,934,592Samsung50 nm
16 GbSDRAM 17,179,869,1842008Samsung50 nm
32 GbSDRAM 34,359,738,3682016Samsung20 nm
64 GbSDRAM 68,719,476,7362017Samsung20 nm
128 GbSDRAM 137,438,953,4722018Samsung10 nm
RRAM 2019Skywater90 nm

Chip nameCapacity Flash typeFGMOS transistor countDate of introductionManufacturerMOS processArea
256 KbNOR262,1441985Toshiba2,000 nm
1 MbNOR1,048,5761989Seeq, Intel
4 MbNAND4,194,3041989Toshiba1,000 nm
16 MbNOR16,777,2161991Mitsubishi600 nm
DD28F032SA32 MbNOR33,554,4321993Intel280 mm2
64 MbNOR67,108,8641994NEC400 nm
64 MbNAND67,108,8641996Hitachi400 nm
128 MbNAND134,217,7281996Samsung, Hitachi
256 MbNAND268,435,4561999Hitachi, Toshiba250 nm
512 MbNAND536,870,9122000Toshiba
1 Gb2-bit NAND536,870,9122001Samsung
1 Gb2-bit NAND536,870,9122001Toshiba, SanDisk160 nm
2 GbNAND2,147,483,6482002Samsung, Toshiba
8 GbNAND8,589,934,5922004Samsung60 nm
16 GbNAND17,179,869,1842005Samsung50 nm
32 GbNAND34,359,738,3682006Samsung40 nm
THGAM128 GbStacked NAND128,000,000,000Toshiba56 nm252 mm2
THGBM256 GbStacked NAND256,000,000,0002008Toshiba43 nm353 mm2
THGBM21 TbStacked 4-bit NAND256,000,000,0002010Toshiba32 nm374 mm2
KLMCG8GE4A512 GbStacked 2-bit NAND256,000,000,0002011Samsung192 mm2
KLUFG8R1EM4 TbStacked 3-bit V-NAND1,365,333,333,5042017Samsung150 mm2
eUFS 8 TbStacked 4-bit V-NAND2,048,000,000,0002019Samsung150 mm2

Chip nameCapacity ROM typeTransistor countDate of introductionManufacturerMOS processArea
PROM1956Arma
1 KbROM 1,0241965General Microelectronics
33011 KbROM 1,0241969Intel
17022 KbEPROM 2,0481971Intel15 mm2
4 KbROM 4,0961974AMD, General Instrument
27088 KbEPROM 8,1921975Intel
2 KbEEPROM 2,0481976Toshiba
µCOM-43 ROM16 KbPROM 16,0001977NEC
271616 KbEPROM 16,3841977Intel
EA8316F16 KbROM 16,3841978Electronic Arrays436 mm2
273232 KbEPROM32,7681978Intel
236464 KbROM65,5361978Intel
276464 KbEPROM65,5361981Intel3,500 nm
27128128 KbEPROM131,0721982Intel
27256256 KbEPROM 262,1441983Intel
256 KbEPROM 262,1441983Fujitsu
512 KbEPROM 524,2881984AMD1,700 nm
27512512 KbEPROM 524,2881984Intel
1 MbEPROM 1,048,5761984NEC1,200 nm
4 MbEPROM 4,194,3041987Toshiba800 nm
16 MbEPROM 16,777,2161990NEC600 nm
16 MbMROM16,777,2161995AKM, Hitachi

Transistor computers

Before transistors were invented, relays were used in early computers. The world's first working programmable, fully automatic digital computer, the 1941 Z3 22-bit word length computer, had 2,600 relays, and operated at a clock frequency of about 4–5 Hz. The 1940 Complex Number Computer had fewer than 500 relays, but it was not fully programmable.
The second generation of computers were transistor computers that featured boards filled with discrete transistors and magnetic memory cores. The experimental 1953 48-bit Transistor Computer, developed at the University of Manchester, is widely believed to be the first transistor computer to come into operation anywhere in the world. A later version the 1955 machine had a total of 250 junction transistors and 1300 point diodes. The Computer also used a small number of tubes in its clock generator, so it was not the first transistorized. The ETL Mark III, developed at the Electrotechnical Laboratory in 1956, may have been the first transistor-based electronic computer using the stored program method. It had about "130 point-contact transistors and about 1,800 germanium diodes were used for logic elements, and these were housed on 300 plug-in packages which could be slipped in and out. The 1958 decimal architecture IBM 7070 was the first transistor computer to be fully programmable. It had about 30,000 alloy-junction germanium transistors and 22,000 germanium diodes, on approximately 14,000 Standard Modular System cards. The 1959 MOBIDIC, short for "MOBIle DIgital Computer", at 12,000 pounds mounted in the trailer of a semi-trailer truck, was a transistorized computer for battlefield data.
The third generation of computers used integrated circuits. The 1962 15-bit Apollo Guidance Computer used "about 4,000 "Type-G" circuits" for about 12,000 transistors plus 32,000 resistors.
The first commercial IC-based computer was the IBM System/360 in 1964. The 1965 12-bit PDP-8 CPU had 1409 transistors and over 10,000 diodes. It was not a microprocessor, as it used discrete transistors on many cards; but later microprocessors, such as the Intersil 6100 reimplemented it, see below.
The next generation of computers were the microcomputers, also known as home computers or personal computers, which used MOS microprocessors, in the 1970s. This list includes early transistorized computers and IC-based computers from the 1950s and 1960s.
ComputerTransistor countYearManufacturerNotes
Transistor Computer921953University of ManchesterPoint-contact transistors
TRADIC7001954Bell LabsPoint-contact transistors
Transistor Computer 2501955University of ManchesterDiscrete point-contact transistors
ETL Mark III1301956Electrotechnical LaboratoryPoint-contact transistors
Metrovick 9502001956Metropolitan-VickersDiscrete junction transistors
NEC NEAC-22016001958NECGermanium transistors
Hitachi MARS-11,0001958Hitachi
IBM 707030,0001958IBMAlloy-junction germanium transistors
Matsushita MADIC-I4001959MatsushitaBipolar transistors
NEC NEAC-22032,5791959NEC
Toshiba TOSBAC-21005,0001959Toshiba
IBM 709050,0001959IBMDiscrete germanium transistors
PDP-12,7001959Digital Equipment CorporationDiscrete transistors
Mitsubishi MELCOM 11013,5001960MitsubishiGermanium transistors
M18 FADAC1,6001960AutoneticsDiscrete transistors
D-17B1,5211962AutoneticsDiscrete transistors
NEC NEAC-L216,0001964NECGe transistors
IBM System/360?1964IBMIntegrated circuits
PDP-8/I14091968Digital Equipment Corporation74 series TTL circuits
Apollo Guidance Computer Block II12,3001966Raytheon / MIT Instrumentation Laboratory4,100 ICs, each containing a 3-transistor, 3-input NOR gate

Logic functions

Transistor count for generic logic functions is based on static CMOS implementation.
FunctionTransistor countRef
NOT2
Buffer4
NAND 2-input4
NOR 2-input4
AND 2-input6
OR 2-input6
NAND 3-input6
NOR 3-input6
XOR 2-input6
XNOR 2-input8
MUX 2-input with TG6
MUX 4-input with TG18
NOT MUX 2-input8
MUX 4-input24
1-bit adder full28
1-bit adder–subtractor48
AND-OR-INVERT6
Latch, D gated8
Flip-flop, edge triggered dynamic D with reset12
8-bit multiplier3,000
16-bit multiplier9,000
32-bit multiplier21,000
small-scale integration2–100
medium-scale integration100–500
large-scale integration500–20,000
very-large-scale integration20,000–1,000,000
ultra-large scale integration>1,000,000

Parallel systems

Historically, each processing element in earlier parallel systems—like all CPUs of that time—was a serial computer built out of multiple chips. As transistor counts per chip increases, each processing element could be built out of fewer chips, and then later each multi-core processor chip could contain more processing elements.
Goodyear MPP: 8 pixel processors per chip, 3,000 to 8,000 transistors per chip.
Brunel University Scape : 256 pixel processors per chip, 120,000 to 140,000 transistors per chip.
Cell Broadband Engine: with 9 cores per chip, had 234 million transistors per chip.

Other devices

Transistor density

The transistor density is the number of transistors that are fabricated per unit area, typically measured in terms of the number of transistors per square millimeter. The transistor density usually correlates with the gate length of a semiconductor node, typically measured in nanometers., the semiconductor node with the highest transistor density is TSMC's 5 nanometer node, with 171.3million transistors per square millimeter.

MOSFET nodes

Node nameTransistor density Production yearProcessMOSFETManufacturer
196020,000 nmPMOSBell Labs
196020,000 nmNMOSBell Labs
1963CMOSFairchild
1964PMOSGeneral Microelectronics
196820,000 nmCMOSRCA
196912,000 nmPMOSIntel
197010,000 nmCMOSRCA
19708,000 nmPMOSIntel
197110,000 nmPMOSIntel
1971PMOSGeneral Instrument
1973NMOSTexas Instruments
1973NMOSMostek
19737,500 nmNMOSNEC
19736,000 nmPMOSToshiba
19765,000 nmNMOSHitachi, Intel
19765,000 nmCMOSRCA
19764,000 nmNMOSZilog
19763,000 nmNMOSIntel
1977NMOSNTT
19783,000 nmCMOSHitachi
19782,500 nmNMOSTexas Instruments
19782,000 nmNMOSNEC, NTT
1979VMOSSiemens
19791,000 nmNMOSNTT
19801,000 nmNMOSNTT
19832,000 nmCMOSToshiba
19831,500 nmCMOSIntel
19831,200 nmCMOSIntel
1984800 nmCMOSNTT
1987700 nmCMOSFujitsu
1989600 nmCMOSMitsubishi, NEC, Toshiba
1989500 nmCMOSHitachi, Mitsubishi, NEC, Toshiba
1991400 nmCMOSMatsushita, Mitsubishi, Fujitsu, Toshiba
1993350 nmCMOSSony
1993250 nmCMOSHitachi, NEC
3LM32,0001994350 nmCMOSNEC
1995160 nmCMOSHitachi
1996150 nmCMOSMitsubishi
TSMC 180nm1998180 nmCMOSTSMC
CS801999180 nmCMOSFujitsu
1999180 nmCMOSIntel, Sony, Toshiba
CS851999170 nmCMOSFujitsu
Samsung 140nm1999140 nmCMOSSamsung
2001130 nmCMOSFujitsu, Intel
Samsung 100nm2001100 nmCMOSSamsung
200290 nmCMOSSony, Toshiba, Samsung
CS100200390 nmCMOSFujitsu
Intel 90nm1,450,000200490 nmCMOSIntel
Samsung 80nm200480 nmCMOSSamsung
200465 nmCMOSFujitsu, Toshiba
Samsung 60nm200460 nmCMOSSamsung
TSMC 45nm200445 nmCMOSTSMC
Elpida 90nm200590 nmCMOSElpida Memory
CS200200565 nmCMOSFujitsu
Samsung 50nm200550 nmCMOSSamsung
Intel 65nm2,080,000200665 nmCMOSIntel
Samsung 40nm200640 nmCMOSSamsung
Toshiba 56nm200756 nmCMOSToshiba
Matsushita 45nm200745 nmCMOSMatsushita
Intel 45nm3,300,000200845 nmCMOSIntel
Toshiba 43nm200843 nmCMOSToshiba
TSMC 40nm200840 nmCMOSTSMC
Toshiba 32nm200932 nmCMOSToshiba
Intel 32nm7,500,000201032 nmCMOSIntel
201020 nmCMOSHynix, Samsung
Intel 22nm15,300,000201222 nmCMOSIntel
IMFT 20nm201220 nmCMOSIMFT
Toshiba 19nm201219 nmCMOSToshiba
Hynix 16nm201316 nmFinFETSK Hynix
TSMC 16nm28,880,000201316 nmFinFETTSMC
Samsung 10nm51,820,000201310 nmFinFETSamsung
Intel 14nm37,500,000201414 nmFinFETIntel
14LP32,940,000201514 nmFinFETSamsung
TSMC 10nm52,510,000201610 nmFinFETTSMC
12LP36,710,000201712 nmFinFETGlobalFoundries, Samsung
N7FF96,500,00020177 nmFinFETTSMC
8LPP61,180,00020188 nmFinFETSamsung
7LPE95,300,00020187 nmFinFETSamsung
Intel 10nm100,760,000201810 nmFinFETIntel
5LPE126,530,00020185 nmFinFETSamsung
N7FF+113,900,00020197 nmFinFETTSMC
CLN5FF171,300,00020195 nmFinFETTSMC
TSMC 3nm3 nmTSMC
Samsung 3nm3 nmGAAFETSamsung