Tram


A tram is a rail vehicle that runs on tramway tracks along public urban streets; some include segments of segregated right-of-way. The lines or networks operated by tramcars are called tramways. Historically the term electric street railways was also used in the United States. In the United States, the term tram has sometimes been used for rubber-tired trackless trains, which are unrelated to other kinds of trams.
Tram vehicles are usually lighter and shorter than main line and rapid transit trains. Today, most trams use electrical power, usually fed by a pantograph sliding on an overhead line; older systems may use a trolley pole or a bow collector. In some cases, a contact shoe on a third rail is used. If necessary, they may have dual power systems—electricity in city streets and diesel in more rural environments. Occasionally, trams also carry freight.
Trams are now commonly included in the wider term "light rail", which also includes grade-separated systems. Some trams, known as tram-trains, may have segments that run on mainline railway tracks, similar to interurban systems. The differences between these modes of rail transport are often indistinct and a given system may combine multiple features.
One of the advantages over earlier forms of transit was the low rolling resistance of metal wheels on steel rails, allowing the trams to haul a greater load for a given effort. Problems included the high total cost of ownership of horses. Electric trams largely replaced animal power in the late 19th and early 20th centuries. Improvements in other vehicles such as buses led to decline of trams in the mid 20th century. However, trams have seen resurgence in recent years.

Etymology and terminology

The English terms tram and tramway are derived from the Scots word tram, referring respectively to a type of truck used in coal mines and the tracks on which they ran. The word tram probably derived from Middle Flemish . The identical word la trame with the meaning "crossbeam" is also used in the French language. Etymologists believe that the word tram refers to the wooden beams the railway tracks were initially made of before the railroad pioneers switched to the much more wear-resistant tracks made of iron and, later, steel. The word Tram-car is attested from 1873.
Although the terms tram and tramway have been adopted by many languages, they are not used universally in English; North Americans prefer streetcar, trolley, or trolleycar. The term streetcar is first recorded in 1840, and originally referred to horsecars. When electrification came, Americans began to speak of trolleycars or later, trolleys. A widely held belief holds the word to derive from the troller, a four-wheeled device that was dragged along dual overhead wires by a cable that connected the troller to the top of the car and collected electrical power from the overhead wires; this portmanteau derivation is, however, most likely folk etymology. "Trolley" and variants refer to the verb troll, meaning "roll" and probably derived from Old French, and cognate uses of the word were well established for handcarts and horse drayage, as well as for nautical uses.
The alternative North American term 'trolley' may strictly speaking be considered incorrect, as the term can also be applied to cable cars, or conduit cars that instead draw power from an underground supply. Conventional diesel tourist buses decorated to look like streetcars are sometimes called trolleys in the US. Furthering confusion, the term tram has instead been applied to open-sided, low-speed segmented vehicles on rubber tires generally used to ferry tourists short distances, for example on the Universal Studios backlot tour and, in many countries, as tourist transport to major destinations. The term may also apply to an aerial ropeway, e.g. the Roosevelt Island Tramway.
Although the use of the term trolley for tram was not adopted in Europe, the term was later associated with the trolleybus, a rubber-tyred vehicle running on hard pavement, which draws its power from pairs of overhead wires. These electric buses, which use twin trolley poles, are also called trackless trolleys, or sometimes simply trolleys.
The New South Wales government in Australia has decided to use the term "light rail" for their trams.

History

The history of trams, streetcars or trolley systems, began in the early nineteenth century. It can be divided up into several discrete periods defined by the principal means of motive power used.

Horse-drawn

The world's first passenger train or tram was the Swansea and Mumbles Railway, in Wales, UK. The Mumbles Railway Act was passed by the British Parliament in 1804, and horse-drawn service started in 1807. The service closed in 1827, but was restarted in 1860, again using horses. It was worked by steam from 1877, and then, from 1929, by very large electric tramcars, until closure in 1961. The Swansea and Mumbles Railway was something of a one-off however, and no street tramway would appear in Britain until 1860 when one was built in Birkenhead by the American George Francis Train.
Street railways developed in America before Europe, largely due to the poor paving of the streets in American cities which made them unsuitable for horsebuses, which were then common on the well-paved streets of European cities. Running the horsecars on rails allowed for a much smoother ride. There are records of a street railway running in Baltimore as early as 1828, however the first authenticated streetcar in America, was the New York and Harlem Railroad developed by the Irish coach builder John Stephenson, in New York City which began service in the year 1832. The New York and Harlem Railroad's Fourth Avenue Line ran along the Bowery and Fourth Avenue in New York City. It was followed in 1835 by the New Orleans and Carrollton Railroad in New Orleans, Louisiana, which still operates as the St. Charles Streetcar Line. Other American cities did not follow until the 1850s, after which the "animal railway" became an increasingly common feature in the larger towns.
The first permanent tram line in continental Europe was opened in Paris in 1855 by Alphonse Loubat who had previously worked on American streetcar lines. The tram was developed in numerous cities of Europe.
The first tram in South America opened in 1858 in Santiago, Chile. The first trams in Australia opened in 1860 in Sydney. Africa's first tram service started in Alexandria on 8 January 1863. The first trams in Asia opened in 1869 in Batavia, Netherlands East Indies.
Problems with horsecars included the fact that any given animal could only work so many hours on a given day, had to be housed, groomed, fed and cared for day in and day out, and produced prodigious amounts of manure, which the streetcar company was charged with storing and then disposing of. Since a typical horse pulled a streetcar for about a dozen miles a day and worked for four or five hours, many systems needed ten or more horses in stable for each horsecar.
Horsecars were largely replaced by electric-powered trams following the improvement of an overhead trolley system on trams for collecting electricity from overhead wires by Frank J. Sprague. His spring-loaded trolley pole used a wheel to travel along the wire. In late 1887 and early 1888, using his trolley system, Sprague installed the first successful large electric street railway system in Richmond, Virginia. Within a year, the economy of electric power had replaced more costly horsecars in many cities. By 1889, 110 electric railways incorporating Sprague's equipment had been begun or planned on several continents.
until 1917.
Horses continued to be used for light shunting well into the 20th century, and many large metropolitan lines lasted into the early 20th century. New York City had a regular horsecar service on the Bleecker Street Line until its closure in 1917. Pittsburgh, Pennsylvania, had its Sarah Street line drawn by horses until 1923. The last regular mule-drawn cars in the US ran in Sulphur Rock, Arkansas, until 1926 and were commemorated by a U.S. postage stamp issued in 1983. The last mule tram service in Mexico City ended in 1932, and a mule tram in Celaya, Mexico, survived until 1954. The last horse-drawn tram to be withdrawn from public service in the UK took passengers from Fintona railway station to Fintona Junction one mile away on the main Omagh to Enniskillen railway in Northern Ireland. The tram made its last journey on 30 September 1957 when the Omagh to Enniskillen line closed. The "van" now lies at the Ulster Transport Museum.
Horse-drawn trams still operate on the 1876-built Douglas Bay Horse Tramway in the Isle of Man, and at the 1894-built horse tram at Victor Harbor in South Australia. New horse-drawn systems have been established at the Hokkaidō Museum in Japan and also in Disneyland. A horse tram route in Polish gmina Mrozy, first built in 1902, was reopened in 2012.

Steam

The first mechanical trams were powered by steam. Generally, there were two types of steam tram. The first and most common had a small steam locomotive at the head of a line of one or more carriages, similar to a small train. Systems with such steam trams included Christchurch, New Zealand; Sydney, Australia; other city systems in New South Wales; Munich, Germany, British India and the Dublin & Blessington Steam Tramway in Ireland. Steam tramways also were used on the suburban tramway lines around Milan and Padua; the last Gamba de Legn tramway ran on the Milan-Magenta-Castano Primo route in late 1957.
The other style of steam tram had the steam engine in the body of the tram, referred to as a tram engine or steam dummy. The most notable system to adopt such trams was in Paris. French-designed steam trams also operated in Rockhampton, in the Australian state of Queensland between 1909 and 1939. Stockholm, Sweden, had a steam tram line at the island of Södermalm between 1887 and 1901.
Tram engines usually had modifications to make them suitable for street running in residential areas. The wheels, and other moving parts of the machinery, were usually enclosed for safety reasons and to make the engines quieter. Measures were often taken to prevent the engines from emitting visible smoke or steam. Usually the engines used coke rather than coal as fuel to avoid emitting smoke; condensers or superheating were used to avoid emitting visible steam. A major drawback of this style of tram was the limited space for the engine, so that these trams were usually underpowered. Steam tram engines faded out around the 1890s to 1900s, being replaced by electric trams.

Cable-hauled

Another motive system for trams was the cable car, which was pulled along a fixed track by a moving steel cable. The power to move the cable was normally provided at a "powerhouse" site a distance away from the actual vehicle. The London and Blackwall Railway, which opened for passengers in east London, England, in 1840 used such a system.
The first practical cable car line was tested in San Francisco, in 1873. Part of its success is attributed to the development of an effective and reliable cable grip mechanism, to grab and release the moving cable without damage. The second city to operate cable trams was Dunedin in New Zealand, from 1881 to 1957.
The most extensive cable system in the US was built in Chicago, having been built in stages between 1859 and 1892. New York City developed multiple cable car lines, that operated from 1883 to 1909. Los Angeles also had several cable car lines, including the Second Street Cable Railroad, which operated from 1885 to 1889, and the Temple Street Cable Railway, which operated from 1886 to 1898.
From 1885 to 1940, the city of Melbourne, Victoria, Australia operated one of the largest cable systems in the world, at its peak running 592 trams on of track. There were also two isolated cable lines in Sydney, New South Wales, Australia; the North Sydney line from 1886 to 1900, and the King Street line from 1892 to 1905.
In Dresden, Germany, in 1901 an elevated suspended cable car following the Eugen Langen one-railed floating tram system started operating. Cable cars operated on Highgate Hill in North London and Kennington to Brixton Hill In South London. They also worked around "Upper Douglas" in the Isle of Man from 1897 to 1929.
Cable cars suffered from high infrastructure costs, since an expensive system of cables, pulleys, stationary engines and lengthy underground vault structures beneath the rails had to be provided. They also required physical strength and skill to operate, and alert operators to avoid obstructions and other cable cars. The cable had to be disconnected at designated locations to allow the cars to coast by inertia, for example when crossing another cable line. The cable would then have to be "picked up" to resume progress, the whole operation requiring precise timing to avoid damage to the cable and the grip mechanism. Breaks and frays in the cable, which occurred frequently, required the complete cessation of services over a cable route while the cable was repaired. Due to overall wear, the entire length of cable would have to be replaced on a regular schedule. After the development of reliable electrically powered trams, the costly high-maintenance cable car systems were rapidly replaced in most locations.
Cable cars remained especially effective in hilly cities, since their nondriven wheels would not lose traction as they climbed or descended a steep hill. The moving cable would physically pull the car up the hill at a steady pace, unlike a low-powered steam or horse-drawn car. Cable cars do have wheel brakes and track brakes, but the cable also helps restrain the car to going downhill at a constant speed. Performance in steep terrain partially explains the survival of cable cars in San Francisco.
The San Francisco cable cars, though significantly reduced in number, continue to perform a regular transportation function, in addition to being a well-known tourist attraction. A single cable line also survives in Wellington, New Zealand. Another system, actually two separate cable lines with a shared power station in the middle, operates from the Welsh town of Llandudno up to the top of the Great Orme hill in North Wales, UK.

Gas

In the late 19th and early 20th centuries a number of systems in various parts of the world employed trams powered by gas, naphtha gas or coal gas in particular. Gas trams are known to have operated between Alphington and Clifton Hill in the northern suburbs of Melbourne, Australia ; in Berlin and Dresden, Germany; in Estonia ; between Jelenia Góra, Cieplice, and Sobieszów in Poland ; and in the UK at Lytham St Annes, Neath, and Trafford Park, Manchester.
On 29 December 1886 the Melbourne newspaper The Argus reprinted a report from the San Francisco Bulletin that Mr Noble had demonstrated a new 'motor car' for tramways 'with success'. The tramcar 'exactly similar in size, shape, and capacity to a cable grip car' had the 'motive power' of gas 'with which the reservoir is to be charged once a day at power stations by means of a rubber hose'. The car also carried an electricity generator for 'lighting up the tram and also for driving the engine on steep grades and effecting a start'.
Comparatively little has been published about gas trams. However, research on the subject was carried out for an article in the October 2011 edition of "The Times", the historical journal of the Australian Association of Timetable Collectors, now the Australian Timetable Association.
A tram system powered by compressed natural gas was due to open in Malaysia in 2012, but the news about the project appears to have dried up.

Electric

The world's first electric tram line operated in Sestroretsk near Saint Petersburg, Russia, invented and tested by Fyodor Pirotsky in 1875. Later, using a similar technology, Pirotsky put into service the first public electric tramway in St. Petersburg, which operated only during September 1880.
The second demonstrative tramway was presented by Siemens & Halske at the 1879 Berlin Industrial Exposition.
The first public electric tramway used for permanent service was the Gross-Lichterfelde tramway in Lichterfelde near Berlin in Germany, which opened in 1881. It was built by Werner von Siemens who contacted Pirotsky. This was world's first commercially successful electric tram. It initially drew current from the rails, with overhead wire being installed in 1883.
In Britain, Volk's Electric Railway was opened in 1883 in Brighton). This two kilometer line along the seafront, re-gauged to in 1884, remains in service to this day and is the oldest operating electric tramway in the world. Also in 1883, Mödling and Hinterbrühl Tram was opened near Vienna in Austria. It was the first tram in the world in regular service that was run with electricity served by an overhead line with pantograph current collectors. The Blackpool Tramway was opened in Blackpool, UK on 29 September 1885 using conduit collection along Blackpool Promenade. This system is still in operation in a modernised form.
, c. 1890. Opened in 1883, it is the world's oldest operating electric tramway.
Earliest tram system in Canada was by John Joseph Wright, brother of the famous mining entrepreneur Whitaker Wright, in Toronto in 1883, introducing electric trams in 1892. In the US, multiple functioning experimental electric trams were exhibited at the 1884 World Cotton Centennial World's Fair in New Orleans, Louisiana, but they were not deemed good enough to replace the Lamm fireless engines then propelling the St. Charles Avenue Streetcar in that city. The first commercial installation of an electric streetcar in the United States was built in 1884 in Cleveland, Ohio and operated for a period of one year by the East Cleveland Street Railway Company. Trams were operated in Richmond, Virginia, in 1888, on the Richmond Union Passenger Railway built by Frank J. Sprague. Sprague later developed multiple unit control, first demonstrated in Chicago in 1897, allowing multiple cars to be coupled together and operated by a single motorman. This gave rise to the modern subway train. Following the improvement of an overhead "trolley" system on streetcars for collecting electricity from overhead wires by Sprague, electric tram systems were rapidly adopted across the world.
Earlier electric trains proved difficult or unreliable and experienced limited success until the second half of the 1880s, when new types of current collectors were developed. Siemens' line, for example, provided power through a live rail and a return rail, like a model train, limiting the voltage that could be used, and delivering electric shocks to people and animals crossing the tracks. Siemens later designed his own version of overhead current collection, called the bow collector, and Thorold, Ontario, opened in 1887, and was considered quite successful at the time. While this line proved quite versatile as one of the earliest fully functional electric streetcar installations, it required horse-drawn support while climbing the Niagara Escarpment and for two months of the winter when hydroelectricity was not available. It continued in service in its original form into the 1950s.
Sidney Howe Short designed and produced the first electric motor that operated a streetcar without gears. The motor had its armature direct-connected to the streetcar's axle for the driving force. Short pioneered "use of a conduit system of concealed feed" thereby eliminating the necessity of overhead wire and a trolley pole for street cars and railways. While at the University of Denver he conducted important experiments which established that multiple unit powered cars were a better way to operate trains and trolleys.
Electric tramways spread to many European cities in the 1890s, such as Prague, Bohemia, in 1891; Kiev, Ukraine, in 1892 ; Dresden, Germany, Lyon, France, and Milan and Genoa, Italy, in 1893; Rome, Italy, Plauen, Germany, in 1894; Bristol, United Kingdom, Munich, in 1895; Bilbao, Spain, in 1896; Copenhagen, Denmark, and Vienna, Austria, in 1897; Florence and Turin, Italy, in 1898; Helsinki, Finland, and Madrid and Barcelona, Spain, in 1899. Sarajevo built a citywide system of electric trams in 1895. Budapest established its tramway system in 1887, and its ring line has grown to be the busiest tram line in Europe, with a tram running every 60 seconds at rush hour. Bucharest and Belgrade ran a regular service from 1894. Ljubljana introduced its tram system in 1901 – it closed in 1958. Oslo had the first tramway in Scandinavia, starting operation on 2 March 1894.
The first electric tramway in Australia was a Sprague system demonstrated at the 1888 Melbourne Centennial Exhibition in Melbourne; afterwards, this was installed as a commercial venture operating between the outer Melbourne suburb of Box Hill and the then tourist-oriented country town Doncaster from 1889 to 1896. As well, electric systems were built in Adelaide, Ballarat, Bendigo, Brisbane, Fremantle, Geelong, Hobart, Kalgoorlie, Launceston, Leonora, Newcastle, Perth, and Sydney.
By the 1970s, the only full tramway system remaining in Australia was the Melbourne tram system. However, there were also a few single lines remaining elsewhere: the Glenelg tram line, connecting Adelaide to the beachside suburb of Glenelg, and tourist trams in the Victorian Goldfields cities of Bendigo and Ballarat. In recent years the Melbourne system, generally recognised as the largest urban tram network in the world, has been considerably modernised and expanded. The Adelaide line has also been extended to the Entertainment Centre, and work is progressing on further extensions. Sydney re-introduced trams on 31 August 1997. A completely new system, known as, was introduced on the Gold Coast, Queensland on 20 July 2014. The Newcastle Light Rail opened in February 2019, while the Canberra light rail is scheduled to open in April 2019. This will be the first time that there have been trams in Canberra, even though Walter Burley Griffin's 1914-1920 plans for the capital then in the planning stage did propose a Canberra tram system.
In Japan, the Kyoto Electric railroad was the first tram system, starting operation in 1895. By 1932, the network had grown to 82 railway companies in 65 cities, with a total network length of. By the 1960s the tram had generally died out in Japan.
Two rare but significant alternatives were conduit current collection, which was widely used in London, Washington, D.C. and New York City, and the surface contact collection method, used in Wolverhampton, Torquay and Hastings in the UK, and currently in Bordeaux, France.
The convenience and economy of electricity resulted in its rapid adoption once the technical problems of production and transmission of electricity were solved. Electric trams largely replaced animal power and other forms of motive power including cable and steam, in the late 19th and early 20th centuries.
There is one particular hazard associated with trams powered from a trolley pole off an overhead line. Since the tram relies on contact with the rails for the current return path, a problem arises if the tram is derailed or if it halts on a section of track that has been particularly heavily sanded by a previous tram, and the tram loses electrical contact with the rails. In this event, the underframe of the tram, by virtue of a circuit path through ancillary loads, is live at the full supply voltage, typically 600 volts DC. In British terminology, such a tram was said to be ‘grounded’—not to be confused with the US English use of the term, which means the exact opposite. Any person stepping off the tram completed the earth return circuit and could receive a nasty electric shock. In such an event, the driver was required to jump off the tram and pull down the trolley pole, before allowing passengers off the tram. Unless derailed, the tram could usually be recovered by running water down the running rails from a point higher than the tram, the water providing a conducting bridge between the tram and the rails.
In the 2000s, two companies introduced catenary-free designs. Alstom's Citadis line uses a third rail, and Bombardier's PRIMOVE LRV is charged by contactless induction plates embedded in the trackway.

Other power sources

In some places, other forms of power were used to power the tram.

Battery

As early as 1834, Thomas Davenport, a Vermont blacksmith, had invented a battery-powered electric motor which he later patented. The following year he used it to operate a small model electric car on a short section of track four feet in diameter.
Attempts to use batteries as a source of electricity were made from the 1880s and 1890s, with unsuccessful trials conducted in among other places Bendigo and Adelaide in Australia, and for about 14 years as The Hague accutram of HTM in the Netherlands. The first trams in Bendigo, Australia, in 1892, were battery-powered but within as little as three months they were replaced with horse-drawn trams. In New York City some minor lines also used storage batteries. Then, comparatively recently, during the 1950s, a longer battery-operated tramway line ran from Milan to Bergamo. In China there is a Nanjing battery Tram line and has been running since 2014. More recently in 2019, the West Midlands Metro in Birmingham, England has adopted battery powered trams on sections through the city centre close to Grade I listed Birmingham Town Hall.

Compressed air

Paris and Berne operated trams that were powered by compressed air using the Mekarski system.

Human power

The Convict Tramway was hauled by human power in the form of convicts from the Port Arthur convict settlement. and was created to replace the hazardous sea voyage from Hobart to Port Arthur, Tasmania. Charles O'Hara Booth oversaw the construction of the tramway.
It opened in 1836 and ran for 8 km from Oakwood to Taranna. By most definitions, the tramway was the first passenger-carrying railway/tramway in Australia. An unconfirmed report says that it continued to Eaglehawk Neck and, if this was so, the length of the tramway would have been more than doubled. The tramway carried passengers and freight, and ran on wooden rails. The gauge is unknown. The date of closure is unknown, but it was certainly prior to 1877.

Hydrogen

In March 2015, China South Rail Corporation demonstrated the world's first hydrogen fuel cell vehicle tramcar at an assembly facility in Qingdao. The chief engineer of the CSR subsidiary CSR Sifang Co Ltd., Liang Jianying, said that the company is studying how to reduce the running costs of the tram.

Hybrid

The Trieste–Opicina tramway in Trieste operates a hybrid funicular tramway system. Conventional electric trams are operated in street running and on reserved track for most of their route. However, on one steep segment of track, they are assisted by cable tractors, which push the trams uphill and act as brakes for the downhill run. For safety, the cable tractors are always deployed on the downhill side of the tram vehicle.
Similar systems were used elsewhere in the past, notably on the Queen Anne Counterbalance in Seattle and the Darling Street wharf line in Sydney.

Liquid fuel

and some other tramways, for example Stockholms Spårvägar in Sweden and some lines in Karachi, used petrol trams. Galveston Island Trolley in Texas operated diesel trams due to the city's hurricane-prone location, which would result in frequent damage to an electrical supply system.
Although Portland, Victoria promotes its tourist tram as being a cable car it actually operates using a hidden diesel motor. The tram, which runs on a circular route around the town of Portland, uses dummies and salons formerly used on the extensive Melbourne cable tramway system and now beautifully restored.

Modern development

In the mid-20th century many tram systems were disbanded, replaced by buses, automobiles or rapid transit. The General Motors streetcar conspiracy was a case study of the decline of trams in the United States. In the 21st century, trams have been re-introduced in cities where they had been closed down for decades, or kept in heritage use. Vehicle fabricates from the 1990s and onwards are usually low-floor trams with features such as articulation and regenerative braking.

Design

Trams have been used for two main purposes: for carrying passengers and for carrying cargo. There are several types of passenger tram:

Operation

There are two main types of tramways, the classic tramway built in the early 20th century with the tram system operating in mixed traffic, and the later type which is most often associated with the tram system having its own right of way. Tram systems that have their own right of way are often called light rail but this does not always hold true. Though these two systems differ in their operation, their equipment is much the same.

Controls

Trams were traditionally operated with separate levers for applying power and brakes. More modern vehicles use a locomotive-style controller which incorporate a dead man's switch. The success of the PCC streetcar had also seen trams use automobile-style foot controls allowing hands-free operation, particularly when the driver was responsible for fare collection.

Power supply

Electric trams use various devices to collect power from overhead lines. The most common device found today is the pantograph, while some older systems use trolley poles or bow collectors. Ground-level power supply has become a recent innovation. Another new technology uses supercapacitors; when an insulator at a track switch cuts off power from the tram for a short distance along the line, the tram can use energy stored in a large capacitor to drive the tram past the gap in the power feed. A rather obsolete system for power supply is conduit current collection.
The old tram systems in London, Manhattan, and Washington, D.C., used live rails, like those on third-rail electrified railways, but in a conduit underneath the road, from which they drew power through a plough. It was called Conduit current collection. Washington's was the last of these to close, in 1962. Today, no commercial tramway uses this system. More recently, a modern equivalent to these systems has been developed which allows for the safe installation of a third rail on city streets, which is known as surface current collection or ground-level power supply; the main example of this is the new tramway in Bordeaux.

Ground-level power supply

A ground-level power supply system also known as Surface current collection or Alimentation par le sol is an updated version of the original stud type system. APS uses a third rail placed between the running rails, divided electrically into eight-metre powered segments with three metre neutral sections between. Each tram has two power collection skates, next to which are antennas that send radio signals to energize the power rail segments as the tram passes over them.
Older systems required mechanical switching systems which were susceptible to environmental problems. At any one time no more than two consecutive segments under the tram should actually be live. Wireless and solid state switching remove the mechanical problem.
Alstom developed the system primarily to avoid intrusive power supply cables in the sensitive area of the old city of old Bordeaux.

Route

Route patterns vary greatly among the world's tram systems, leading to different network topologies.
In some places, the opportunity is taken when roads are being repaved to lay tramlines even though no service is immediately planned: such is the case in Leipzigerstraße in Berlin, the Haarlemmer Houttuinen in Amsterdam, and Botermarkt in Ghent.
Tram systems operate across national borders in Basel and Strasbourg. It is planned to open a line linking Hasselt with Maastricht in 2021.

Track

Tramway track can have different rail profiles to accommodate the various operating environments of the vehicle. They may be embedded into concrete for street-running operation, or use standard ballasted track with railroad ties on high-speed sections. A more ecological solution is to embed tracks into grass turf.
Tramway tracks use a grooved rail with a groove designed for tramway or railway track in pavement or grassed surfaces. The rail has the railhead on one side and the guard on the other. The guard provides accommodation for the flange. The guard carries no weight, but may act as a checkrail. Grooved rail was invented in 1852 by Alphonse Loubat, a French inventor who developed improvements in tram and rail equipment, and helped develop tram lines in New York City and Paris. The invention of grooved rail enabled tramways to be laid without causing a nuisance to other road users, except unsuspecting cyclists, who could get their wheels caught in the groove. The grooves may become filled with gravel and dirt and need clearing from time to time, this being done by a "scrubber" tram. Failure to clear the grooves can lead to a bumpy ride for the passengers, damage to either wheel or rail and possibly derailing.
In narrow situations double-track tram lines sometimes reduce to single track, or, to avoid switches, have the tracks interlaced, e.g. in the Leidsestraat in Amsterdam on three short stretches ; this is known as interlaced or gauntlet track. There is a UK example of interlaced track on the Tramlink, just west of Mitcham Station, where the formation is narrowed by an old landslip causing an obstruction..

Track gauge

Historically, the track gauge has had considerable variations, with narrow gauge common in many early systems. However, most light rail systems are now standard gauge. An important advantage of standard gauge is that standard railway maintenance equipment can be used on it, rather than custom-built machinery. Using standard gauge also allows light rail vehicles to be delivered and relocated conveniently using freight railways and locomotives.
Another factor favoring standard gauge is that low-floor vehicles are becoming popular, and there is generally insufficient space for wheelchairs to move between the wheels in a narrow gauge layout. Standard gauge also enables – at least in theory – a larger choice of manufacturers and thus lower procurement costs for new vehicles. However, other factors such as electrification or loading gauge for which there is more variation may require costly custom built units regardless.

Tram stop

Tram stops may be similar to bus stops in design and use, particularly in street-running sections, where in some cases other vehicles are legally required to stop clear of the tram doors. Some stops may resemble to railway platforms, particularly in private right-of-way sections and where trams are boarded at standard railway platform height, as opposed to using steps at the doorway or low-floor trams.

Manufacturing

Approximately 5,000 new trams are manufactured each year. As of February 2017, 4,478 new trams were on order from their makers, with options being open for a further 1,092.
The main manufacturers are:

Debate

Advantages

Trams are in a period of growth, with about 800 tram systems operating around the world, 10 or so new systems being opened each year, and many being gradually extended. Some of these systems date from the late 19th or early 20th centuries. In the past 20 years their numbers have been augmented by modern tramway or light rail systems in cities that had discarded this form of transport. There have also been some new tram systems in cities that never previously had them.
Tramways with tramcars or street railways with streetcars were common throughout the industrialised world in the late 19th and early 20th centuries but they had disappeared from most British, Canadian, French and US cities by the mid-20th century.
By contrast, trams in parts of continental Europe continued to be used by many cities, although there were contractions in some countries, including the Netherlands.
Since 1980 trams have returned to favour in many places, partly because their tendency to dominate the roadway, formerly seen as a disadvantage, is now considered to be a merit since it raises the visibility of public transport, and enables streets to be reconfigured to give more space to pedestrians, making cites more pleasant places to live. New systems have been built in the United States, United Kingdom, Ireland, Italy, France, Australia and many other countries.
In Milan, Italy, the old "Ventotto" trams are considered by its inhabitants a "symbol" of the city. The same can be said of trams in Melbourne in general, but particularly the iconic W class. The Toronto streetcar system had similarly become an iconic symbol of the city, operating the largest network in the Americas as well as the only large-scale tram system in Canada.

Major tram and light rail systems

Current systems

The largest tram and fast tram ) networks in the world by route length are:
Other large transit networks that operate streetcar and light rail systems include:
This list is not exhaustive.

Statistics
Historically, the Paris Tram System was, at its peak, the world's largest system, with of track in 1925. However it was completely closed in 1938. The next largest system appears to have been, in Buenos Aires before 19 February 1963. The third largest was Chicago, with over of track, but it was all converted to trolleybus and bus services by 21 June 1958. Before its decline, the BVG in Berlin operated a very large network with of route. Before its system started to be converted to trolleybus services in the 1930s, the first-generation London network had of route in 1931. In 1958 trams in Rio de Jainero were employed on of track. The final line, the Santa teresa route was closed in 1968. During a period in the 1980s, the world's largest tram system was in Leningrad with, USSR, and was included as such in the Guinness World Records; however Saint Petersburg's tram system has declined in size since the fall of the Soviet Union. Vienna in 1960 had, before the expansion of bus services and the opening of a subway. Substituting subway services for tram routes continues. was in Minneapolis-Saint Paul in 1947: There streetcars ended 31 October 1953 in Minneapolis and 19 June 1954 in St. Paul. The Sydney tram network, before it was closed on 25 February 1961, had of route, and was thus the largest in Australia. As from 1961, the Melbourne system took over Sydney's title as the largest network in Australia.
Indonesia

Asia

, whose line forms a part of the Chengdu Metro. The city is one of several in China to invest in tram systems in the early 21st centry
In many European cities, much tramway infrastructure was lost in the mid-20th century, though not always on the same scale as in other parts of the world such as North America. Most of Central and Eastern Europe retained the majority of its tramway systems and it is here that the largest and busiest tram systems in the world are found.
Whereas most systems and vehicles in the tram sector are found in Central and Eastern Europe, in the 1960s and 1970s, tram systems were shut down in many places in Western Europe, however urban transportation has been experiencing a sustained long running revival since the 1990s. Many European cities are rehabilitating, upgrading, expanding and reconstructing their old tramway lines and building new tramway lines.

North America

In North America, these vehicles are called "streetcars" ; the term tram is more likely to be understood as an aerial tramway or a people-mover. Streetcar systems were developed in late 19th to early 20th centuries in a number of cities throughout North America. However, most North American cities saw its streetcar lines removed in the mid-20th century for a variety of financial, technological and social reasons. Exceptions included Boston, Cleveland, Mexico City, New Orleans, Newark, Philadelphia, Pittsburgh, San Francisco, and Toronto.
Canada
currently operates the largest streetcar system in the Americas in terms of track length and ridership. Operated by the Toronto Transit Commission, the streetcar system is the only large-scale streetcar system existing in Canada, excluding heritage streetcar, or light rail systems that are operated in other Canadian municipalities. The streetcar system was established in 1861, and used a variety of vehicles in its history, including horse-drawn streetcars, Peter Witt streetcars, the PCC streetcar, and the Canadian Light Rail Vehicle and its articulated counterpart, the Articulated Light Rail Vehicle. Since December 29, 2019, the system exclusively uses the Flexity Outlook made by Bombardier Transportation.
Streetcars once existed in the Canadian cities of Calgary, Edmonton, Halifax, Hamilton, Kingston, Kitchener, London, Montreal, Ottawa, Peterborough, Quebec City, Regina, Saskatoon, Windsor, and Vancouver. However, Canadian cities excluding Toronto, removed their streetcar systems in the mid-20th century. In the late 1970s and early 1980s, light rail systems were introduced in Calgary and Edmonton; with another light rail system established in Ottawa in 2001. There is now something of a renaissance for light railways in mid-sized cities with Waterloo, Ontario the first to come on line and construction underway in Mississauga, Ontario. In the late 20th century, several Canadian locales restored portions of their defunct streetcar lines, operating them as a heritage feature for tourists. Heritage streetcar lines in Canada include the High Level Bridge Streetcar in Edmonton, the Nelson Electric Tramway in Nelson, and the Whitehorse Waterfront Trolley in Whitehorse.
The United States of America
Pittsburgh had kept most of its streetcar system serving the city and many suburbs, making it the longest-lasting large-network streetcar system in the United States. However, most of Pittsburgh's surviving streetcar lines were converted to light rail in the 1980s. San Francisco's Muni Metro system is the largest surviving streetcar system in the United States, and has even revived previously closed streetcar lines such as the F Market & Wharves heritage streetcar line. In the late 20th century, several cities installed modern light rail systems, in part along the same corridors as their old streetcars systems, the first of these being the San Diego Trolley in San Diego in 1981.
In the 1980s, some cities in the United States brought back streetcars lines, including Memphis, Tampa, and Little Rock; However, these streetcar systems were designed as heritage streetcar lines, and used vintage or replica-vintage vehicles. The first "second-generation streetcar systems" in North America was opened in Portland in 2001. The "second-generation streetcar system," utilizes modern vehicles – vehicles that feature low-floor streetcars. These newer streetcar systems were built in several American cities in the early 21st century including Atlanta, Charlotte, Cincinnati, Dallas, Detroit, Kansas City, Milwaukee, Oklahoma City, Seattle, Tucson, and Washington, D.C..

Oceania

Australia
. The development of light rail became a major issue in the 2016 ACT general elections..

Tram modelling

Model trams are popular in HO scale and O scale. They are typically powered and will accept plastic figures inside. Common manufacturers are Roco and Lima, with many custom models being made as well. The German firm Hödl and the Austrian Halling specialise in 1:87 scale.
In the US, Bachmann Industries is a mass supplier of HO streetcars and kits. Bowser Manufacturing has produced white metal models for over 50 years. There are many boutique vendors offering limited run epoxy and wood models. At the high end are highly detailed brass models which are usually imported from Japan or Korea and can cost in excess of $500. Many of these run on gauge track, which is correct for the representation of in HO scale as in US and Japan, but incorrect in 4 mm scale, as it represents. This scale/gauge hybrid is called OO scale.
O scale trams are also very popular among tram modellers because the increased size allows for more detail and easier crafting of overhead wiring. In the US these models are usually purchased in epoxy or wood kits and some as brass models. The Saint Petersburg Tram Company produces highly detailed polyurethane non-powered O Scale models from around the world which can easily be powered by trucks from vendors like Q-Car.
In the US, one of the best resources for model tram enthusiasts is the East Penn Traction Club of Philadelphia and Trolleyville a website of the Southern California Traction Club.
It is thought that the first example of a working model tramcar in the UK built by an amateur for fun was in 1929, when Frank E. Wilson created a replica of London County Council Tramways E class car 444 in 1:16 scale, which he demonstrated at an early Model Engineer Exhibition. Another of his models was London E/1 1800, which was the only tramway exhibit in the Faraday Memorial Exhibition of 1931. Together with likeminded friends, Frank Wilson went on to found the Tramway & Light Railway Society in 1938, establishing tramway modelling as a hobby.

Tram types